Skip to main content
Log in

Examples of effective solution of the Riemann-Hilbert problem on construction of a differential equation from the monodromy group in the framework of the theory of automorphic functions

  • Published:
Journal of Soviet Mathematics Aims and scope Submit manuscript

Abstract

In this paper we study the classical problem of reconstructing a differential equation from a given monodromy group Г in the situation when Г is a Fuchsian group of the first kind of topological genus zero. We also give a survey of the algebrotopological theory which describes the structure of the subgroups of Г, and we give examples of the calculation of the corresponding modular equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. F. Klein and R. Fricke, Vorlesungen über die Theorie der elliptischen Modulfunktionen, I, II, Teubner, Leipzig (1890, 1892).

    Google Scholar 

  2. F. Klein and R. Fricke, Vorlesungen über die Theorie der automorphen Funktionen. I, II, Teubner, Leipzig (1897, 1912).

    Google Scholar 

  3. I. A. Lappo-Danilevskii, Memoires sur la Theorie des Systemes des Equations Differentielles Lineaires, Chelsea Publ. Co., (1953).

  4. A. B. Venkov, “Construction of the ‘Hauptfunktion,’ solution of Schwarz and Fuchs equations for a surface of genus zero by the method of the spectral theory of automorphic functions,” J. Sov. Math.,31, No. 6 (1985).

  5. A. B. Venkov, “Precise formulas for accessory coefficients in the Schwarz equation,” Funkts. Anal. Prilozhen.,17, No. 3, 1–8 (1983).

    Google Scholar 

  6. A. B. Venkov, “Spectal theory of automorphic functions and its applications,” in: Proc. of ICM in Warszawa, Polish Scientific Publ., Vol. 2, 909–919 (1984).

    Google Scholar 

  7. J. Lehner, “Note on the Schwarz triangle functions,” Pac. J. Math.,4, 243–249 (1954).

    Google Scholar 

  8. A. F. Beardon, The Geometry of Discrete Groups. Graduate Texts in Math., Vol. 91, Springer-Verlag (1983).

  9. K. Takeuchi, “Arithmetic triangle groups,” J. Math. Soc. Jpn.,29, No. 1, 91–106 (1977).

    Google Scholar 

  10. H. Helling, “On the commensurability class of the rational modular group,” J. London Math. Soc.,2, 67–72 (1970).

    Google Scholar 

  11. P. G. Kluit, “Hecke operators on Г*(N) and their traces,” Dissertation, Vrije Universitiet te Amsterdam, Krips Repro Meppel, (1979).

  12. H. P. F. Swinnerton-Dyer, “Arithmetic groups,” in: W. Harvey (ed.), Discrete Groups and Automorphic Functions, Academic Press (1977), pp. 377–401.

  13. J. Raleigh, “On the Fourier coefficients of triangle functions,” Acta Arithm.,8, 107–111 (1965).

    Google Scholar 

  14. T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Graduate Texts in Math., Vol. 41, Springer-Verlag (1976).

  15. A. G. Kurosh, Group Theory [in Russian], Moscow (1953).

  16. I. M. S. Dey, “Schreier systems in free product,” Proc. Glasgow Math. Assoc.,7, 6–79 (1965).

    Google Scholar 

  17. M. Newman, “Asymptotic formulas related to free products of cyclic groups,” Math. Comput.,30, No. 136, 838–846 (1976).

    Google Scholar 

  18. W. W. Stothers, “Free subgroups of the free product of cyclic groups,” Math. Comput.,32, No. 144, 1274–1280 (1978).

    Google Scholar 

  19. M. H. Millington, “Subgroups of the classical modular group,” J. London Math. Soc.,1, 351–357 (1969).

    Google Scholar 

  20. D. Singerman, “Subgroups of Fuchsian groups and finite permutation groups,” Bull. London Math. Soc.,2, 319–323 (1970).

    Google Scholar 

  21. R. S. Kulkarni, “A new proof and an extension of a theorem of Millington on the modular group,” Preprint MPI/SFB 84-49, Max-Planck Institut für Math., Bonn, 1984.

    Google Scholar 

  22. R. S. Kulkarni, “An extension of a theorem of Kurosh and applications to Fuchsian groups,” Michigan Math. J.,30, 259–272 (1983).

    Google Scholar 

  23. G. A. Jones and D. Singerman,“Theory of maps on orientable surfaces,” Proc. London Math. Soc.,37, 273–307 (1978).

    Google Scholar 

  24. H. Petersson, “Konstruktionsprinzipen für Untergruppen der Modulgruppe mit einer oder zwei Spitzenklassen,” J. Reine Angew. Math.,268/9, 94–109 (1974).

    Google Scholar 

  25. W. W. Stothers, “Subgroups of the modular groups,” Proc. Camb. Philos. Soc.,75, 139–153 (1974).

    Google Scholar 

  26. W. W. Stothers, “On a result of Petersson concerning the modular group,” Proc. R. Soc., Edinburgh,87A, 263–270 (1981).

    Google Scholar 

  27. W. W. Stothers, “Impossible specifications for the modular group,” Manuscripta Math.,13, 1–15 (1974).

    Google Scholar 

  28. M. Newman, “Classification of normal subgroups of the modular group,” Trans. Am. Math. Soc.,126, 267–277 (1967).

    Google Scholar 

  29. M. Newman, “A complete description of the normal subgroups of genus one of the modular group,” Am. J. Math.,86, 17–24 (1964).

    Google Scholar 

  30. D. L. McQuillan,“Classification of normal congruence subgroups of the modular group,” Am. J. Math.,87, 285–296 (1965).

    Google Scholar 

  31. R. Fricke, Ueber die Substitutionsgruppen welche zu den aus dem Legendre'schen Integralmodulk 2 (w) gezogenen Wurzeln gehören,” Math. Ann.,28, 99–118 (1887).

    Google Scholar 

  32. G. Pick, “Ueber gewisse genzzahlige lineare Substitutionen, welche sich nicht durch algebraische Kongruenzen erklären lassen,” Math. Ann.,28, 119–124 (1887).

    Google Scholar 

  33. M. Newman, “Normal subgroups of the modular group which are not congruence subgroups,” Proc. Am. Math. Soc.,16, 831–832 (1965).

    Google Scholar 

  34. K. Wohlfahrt, “An extension of F. Klein's level concept,” Illinois J. Math.,8, 529–535 (1964).

    Google Scholar 

  35. M. I. Knopp and M. Newman, “Congruence subgroups of positive genus of the modular group,” Illinois J. Math.,9, 577–583 (1965).

    Google Scholar 

  36. D. L. McQuillan, “On the genus of fields of elliptic modular functions,” Illinois J. Math.,10, 479–487 (1966).

    Google Scholar 

  37. G. Sansone, “Problemi insoluti nella teoria delle sostituzioni lineari,” in: Conv. Inter. di Teori dei Gruppi Finiti (Firenze, 1960), Rome (1960).

  38. M. Newman, “On a problem of G. Sansone,” Ann. Mat. Pura Appl.,65, 27–33 (1964).

    Google Scholar 

  39. G. A. Jones, “Triangular maps and noncongruence subgroups of the modular group,” Bull. London Math. Soc.,11, 117–123 (1979).

    Google Scholar 

  40. A. O. L. Atkin and H. P. P. Swinnerton-Dyer, “Modular forms on non-congruence subgroups,” Proc. Sympos. Pure Math. AMS,19, 1–26 (1971).

    Google Scholar 

  41. R. Fricke, Lehrbuch der Algebra, Vol. 2, Branschweig (1926).

  42. H. Bateman and A. Erdelyi, Higher Transcendental Functions, Vol. 3, McGraw-Hill, New York (1955).

    Google Scholar 

  43. M. Newman, “Construction and application of a class of modular functions. I,” Proc. London Math. Soc.,7, 334–350 (1957).

    Google Scholar 

  44. M. Newman, “Construction and application of a class of modular functions. II,” Proc. London Math. Soc.,9, 373–387 (1959).

    Google Scholar 

  45. B. Birch, “Some calculations of modular relations,” Lect. Notes Math.,320, 175–186 (1973).

    Google Scholar 

Download references

Authors

Additional information

Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR, Vol. 162, pp. 5–42, 1987.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkov, A.B. Examples of effective solution of the Riemann-Hilbert problem on construction of a differential equation from the monodromy group in the framework of the theory of automorphic functions. J Math Sci 46, 1707–1733 (1989). https://doi.org/10.1007/BF01099345

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01099345

Keywords

Navigation