Skip to main content
Log in

The current state of the problem of interaction of acoustic beams with obstacles in a deformable medium

  • Published:
Journal of Soviet Mathematics Aims and scope Submit manuscript

Abstract

We analyze the state of the problem of the formation of radiated and scattered acoustic beams in application to the development of a methodology for studying the information aspects of hydroacoustics and nondestructive control. We discuss the problems of the selective generation of characteristic vibrations of elastic objects in a deformable medium using sharply directed acoustic impulses. We study the problem of posing and methods of solving a certain class of inverse problems of scattering theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. L. Adler, M. A. Brazil, and J. H. Smith, “Redistribution of the energy of a Gaussian ultrasound beam reflected from a liquid-solid interface,”Akust. Zh.,21, No. 1, 1–10 (1975).

    Google Scholar 

  2. A. S. Alekseev, B. G. Mikhailenko, and V. A. Cheverda, “Numerical methods of solving direct and inverse problems of the theory of wave propagation,” in:Current Problems of Computational and Applied Mathematics [in Russian], Nauka, Novosibirsk (1983), pp. 165–172.

    Google Scholar 

  3. V. K. Alekseev, A. D. Plutenko, and G. N. Chervonenko, “Reflection of a beam of monochromatic waves from a flat layer,”Dal'nevostochnyi Akusticheskii Sbornik, No. 1, 24–28 (1975).

    Google Scholar 

  4. V. K. Alekseev, A. D. Plutenko, G. N. Chervonenko, and M. S. Rybachek, “On the problem of diffraction of a bounded beam of scalar waves at the interface of two media,”Prikl. Akust., No. 6, 113–118 (1974).

    Google Scholar 

  5. V. M. Babich and M. M. Popov, “Propagation of concentrated sound beams in a three-dimensional nonuniform medium,”Akust. Zh.,27, No. 6, 828–835 (1981).

    Google Scholar 

  6. A. N. Barkhatov and Yu. N. Cherkashin, “On the deformation of the sound beam of an interior wave at the boundary of two fluids,”Akust. Zh.,9, No. 1, 112–113 (1963).

    Google Scholar 

  7. K. E. Baum, “New Methods of Nonstationary Wideband Analysis and Synthesis of Antennas and Scatterers,”Tr. Inst. Inzh. Electr. Radiotekh.,64, No. 11, 58–81 (1976).

    Google Scholar 

  8. N. S. Bakhvalov, Ya. M. Zhileikin, and E. A. Zabolotskaya,The Nonlinear Theory of Sound Beams [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  9. D. I. Blokhintsev, “The microparticle and its diffraction representation,”Usp. Fiz. Nauk,36, No. 3, 367–371 (1948).

    Google Scholar 

  10. V. A. Burov, A. A. Goryunov, A. V. Saskovets, and T. A. Tikhonova, “Inverse scattering problems in acoustics (a survey),”Akust. Zh.,32, No. 4, 433–449 (1986).

    Google Scholar 

  11. L. M. Brekhovskikh, “Reflection of wave beams and impulses,”Usp. Fiz. Nauk,50, No. 4, 539–576 (1953).

    Google Scholar 

  12. L. M. Brekhovskikh,Layers in Stratified Media [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  13. A. L. Bukhgeim,Volterra Equations and Inverse Problems [in Russian], Nauka, Novosibirsk (1983).

    Google Scholar 

  14. E. S. Vaindruk and A. S. Paritskii, “Properties of the surface reverberation in local radiation of an ocean wave,” in:Fourth All-union Workshop on Statistical Hydroacoustics [in Russian], Mat. Inst. Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1973), pp. 158–167.

    Google Scholar 

  15. N. D. Veksler, “Echo signals from elastic objects in water (a survey),” Preprint, Inst. Kibernet. Akad. Nauk Est. SSR, No. 1 (1971).

  16. N. D. Veksler,Scattering of Impulses on Elastic Cylinders [in Russian], Valgus, Tallinn (1980).

    Google Scholar 

  17. N. D. Veksler,Information Problems of Hydroelasticity [in Russian], Valgus, Tallinn (1982).

    Google Scholar 

  18. N. D. Veksler,Resonance Scattering in Hydroacoustics [in Russian], Valgus, Tallinn (1984).

    Google Scholar 

  19. N. D. Veksler, “Stationary scattering of an acoustic wave by a thick-walled circular elastic cylinder,”Izv. Akad. Nauk Est. SSR, Fizika, Matematika,35, No. 4, 381–389 (1986).

    Google Scholar 

  20. V. A. Voronin, N. I. Kolyagin, A. S. Sosunov, and S. F. Cherepantsev, “Some characteristics of a field scattered from the ocean surface taking account of the relative displacement and relative speed of the locator and the surface element of the ocean,”Prikl. Akust., No. 1, 28–35 (1975).

    Google Scholar 

  21. O. A. Godin, “On the causes for discrepancy between the results of various theories of the Goos-Hanchen effect,”Akust. Zh.,31, No. 1, 31–36 (1985).

    Google Scholar 

  22. O. A. Godin, “The diffraction theory of displacement of bounded wave beams in reflection. II,”Zh. Techn. Fiz.,55, No. 1, 17–25 (1985).

    Google Scholar 

  23. A. S. Golubev, B. A. Kruglov, “The diffraction beam of longitudinal waves in slanted half-planes, cracks, and strips,” Manuscript VINITI, No. 3759 (1977).

  24. D. B. Dianov and K. V. Zharkov, “Creation of normal waves in plates by the method of an obliquely incident sound beam,”Akust. Zh.,10, No. 1, 48–53 (1964).

    Google Scholar 

  25. V. F. Emets, “Solution of an inverse scattering problem in linearized formulation,”Zh. Vych. Mat. i Mat. Fiz.,24, No. 4, 615–619 (1984).

    Google Scholar 

  26. V. F. Emets, “On the inverse scattering problem for sound waves for thin acoustically rigid bodies,”Prikl. Mat. i Mekh.,48, No. 1, 133–136 (1984).

    Google Scholar 

  27. V. F. Emets, “On the distance determination of the properties of thin acoustical scatterers using sound waves,”Akust. Zh.,31, No. 3, 332–337 (1985).

    Google Scholar 

  28. V. F. Emets, “On the inverse problem of scattering of elastic waves by a thin uniform inclusion,”Prikl. Mat. i Mekh.,50, No. 2, 303–308 (1986).

    Google Scholar 

  29. V. F. Emets and A. P. Poddubnyak, “The distance determination of the geometry of convex cavities and rigid inclusions in solid bodies,”Diagn. i Progn. Razrush. Svar. Konstr., No. 2, 49–52 (1986).

    Google Scholar 

  30. G. L. Zhidenko, “Refraction of a convergent ultrasound front passing the smooth interface of two acoustically different media at an angle,”Defektoskopiya, No. 3, 127–128 (1969).

    Google Scholar 

  31. P. Gilly, C. Delaise, V. Henri, and J. Laissé,The aureole effect;inverse scattering of light in a drop of water,

  32. E. A. Zabolotskaya, “Nonlinear propagation of a sound beam in a crystal,”Akust. Zh.,32, No. 1, 61–64 (1986).

    Google Scholar 

  33. E. A. Zabolotskaya, “Sound beams in a nonlinear isotropic solid body,”Akust. Zh.,32, No. 4, 474–479 (1986).

    Google Scholar 

  34. I. N. Kanevskii,Focusing of Sound and Ultrasound Waves [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  35. A. V. Clauson, “Diffraction of narrowly-directed waves at cylindrical bodies,”Tr. Tall. Politekh. Inst., No. 596, 135–141 (1985).

    Google Scholar 

  36. M. V. Klibanov, “On the determination of a function of compact support from the absolute value of its Fourier transform and the inverse scattering problem,”Differents. Urav.,22, No. 10, 1790–1798 (1986).

    Google Scholar 

  37. V. V. Kurin, B. E. Nemtsov, and V. Ya. Eidman, “The precursor and lateral waves in reflection of impulses from the boundary of the interface of two media,”Usp. Fiz. Nauk,147, No. 1, 157–180 (1985).

    Google Scholar 

  38. V. V. Kurin, B. E. Nemtsov, and V. Ya. Eidman, “On the problem of reflection of a beam of sound waves from the interface of two fluids,”Akust. Zh.,31, No. 1, p. 144 (1985).

    Google Scholar 

  39. P. Lax and R. Phillips,Scattering Theory, Academic Press, Boston (1989).

    Google Scholar 

  40. A. D. Lapin, “Reflection of sound by thin plates with periodic irregularities,”Akust. Zh.,31, No. 1, 73–76 (1985).

    Google Scholar 

  41. L. M. Lyamshev,Reflection of Sound by Thin Plates and Shells in a Fluid [in Russian], Academy of Sciences Press, Moscow (1955).

    Google Scholar 

  42. V. I. Makarov and M. Yu. Tikhonov, “The proximate acoustic field created by a two-dimensional radiation source in a solid medium with vibration amplitudes having Gaussian distribution,”Akust. Zh.,26, No. 6, 883–889 (1980).

    Google Scholar 

  43. V. I. Makarov and N. A. Fadeeva, “On the emission of waves by shells in a sound field,”Akust. Zh.,6, No. 2, 261–263 (1960).

    Google Scholar 

  44. Ya. A. Metsaveer, “Computation of the echo signal of a directed sounding impulse from a spherical shell,”Akust. Zh.,22, No. 6, 939–941 (1976).

    Google Scholar 

  45. Ya. A. Metsaveer, N. D. Veksler, and A. S. Stulov,Diffraction of Acoustic Impulses on Elastic Bodies [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  46. U. K. Nigul, Ya. A. Metsaveer, N. D. Veksler, and M. E. Kutser,Echo Signals from Elastic Objects [in Russian], Inst. Kib. Akad. Nauk Est. SSR, Tallinn (1974).

    Google Scholar 

  47. B. K. Novikov, O. V. Rudenko, V. I. Timoshenko,Nonlinear Hydroacoustics [in Russian], Sudostroenie, Leningrad (1981).

    Google Scholar 

  48. H. M. Nussenzweig, “Theory of the rainbow,”Usp. Fiz. Nauk,125, No. 3, 537–547 (1978).

    Google Scholar 

  49. Yu. V. Petukhov, “On the theory of inverse reflection of an ultrasound beam from a liquid/solid interface,”Akust. Zh.,31, No. 2, 230–233 (1985).

    Google Scholar 

  50. A. P. Poddubnyak, “Scattering of a directed sound impulse at an elastic sphere,” in:Proc. 5th Conf. Young Scholars [in Russian], MIAN Ukr. SSR, L'vov branch (1978), pp. 90–93.

    Google Scholar 

  51. A. P. Poddubnyak, “Scattering of a bounded sound beam at an acoustically soft round cylinder,”Akust. Zh.,25, No. 1, 108–112 (1979).

    Google Scholar 

  52. A. P. Poddubnyak, “The echo signal from an elastic sphere under the action of a sharply directed sound impulse,”Mat. Met. Fiz.-Mekh. Polya, No. 9, 92–95 (1979).

    Google Scholar 

  53. A. P. Poddubnyak and A. R. Voloshin, “The localized action of a sound beam on an elastic cylindrical shell,”Akust. Zh., No. 20, 82–86 (1984).

    Google Scholar 

  54. A. P. Poddubnyak and V. V. Porokhovskii, “The interaction of a bounded sound beam with an elastic hollow sphere in an acoustical fluid,”Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 4, 51–54 (1980).

    Google Scholar 

  55. Ya. S. Podstrigach, G. V. Plyatsko, V. A. Galazyuk, and A. N. Gorechko, “Scattering of a bounded sound beam at a periodically ribbed plate,”Prikl. Mekh.,21, No. 9, 60–65 (1985).

    Google Scholar 

  56. Ya. S. Podstrigach and A. P. Poddubnyak,The Scattering of Sound Beams on Elastic Bodies of Spherical and Cylindrical Shape [in Russian], Naukova Dumka, Kiev (1986).

    Google Scholar 

  57. Ya. S. Podstrigach, A. P. Poddubnyak, and D. V. Grilitskii, “Diffraction of a sharply directed sound impulse on an acoustically soft sphere,”Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 3, 240–243 (1978).

    Google Scholar 

  58. Ya. S. Podstrigach, V. A. Mishchenko, and A. P. Poddubnyak, “Formation of parametrically produced Gaussian beams in a solid elastic body,”Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 7, 39–42 (1986).

    Google Scholar 

  59. Ya. S. Podstrigach, A. P. Poddubnyak, and V. V. Porokhovskii, “Analysis of a transmitted nonstationary signal from an elastic sphere under the action of a directed spherical wave,”Mat. Met. Fiz.-Mekh. Polya, No. 11, 47–51 (1980).

    Google Scholar 

  60. Ya. S. Podstrigach, V. V. Porokhovskii, and A. P. Poddubnyak, “Analysis of a transmitted nonstationary signal from an elastic sphere under the action of a bounded sound beam,”Mat. Met. Fiz.-Mekh. Polya, No. 12, 28–31 (1980).

    Google Scholar 

  61. M. M. Popov, “The method of summing Gaussian beams in the isotropic theory of elasticity,”Izv. Akad. Nauk SSSR, Fizika Zemli, No. 9, 39–50 (1983).

    Google Scholar 

  62. V. V. Porokhovskii, “Scattering of a sound beam by an elastic spherical shell in water,”Prikl. Mekh.,18, No. 8, 111–113 (1982).

    Google Scholar 

  63. V. V. Porokhovskii, “The interaction of a localized sound beam with an elastic object in an acoustical medium,” Kand. Diss., L'vov (1983).

  64. A. I. Potapov and I. N. Soldatov, “Quasioptical approximation for a beam of shift waves in a nonlinear hereditary medium,”Zh. Prikl. Mekh. i Tekh. Fiz., No. 1, 144–147 (1986).

    Google Scholar 

  65. O. V. Rudenko and S. I. Soluyan,Theoretical Foundations of Nonlinear Acoustics [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  66. A. G. Sveshnikov, A. S. Il'inskii, Yu. A. Eremin, and A. V. Chivilev, “Some aspects of the study of the problem of recovering the shape of an ideal scatterer,”Sb. Rabot VTs Mosk. Univ.,36, 126–134 (1982).

    Google Scholar 

  67. V. N. Stepanov, “Geometric questions in the inverse scattering problem,”Sib. Mat. Zh.,25, No. 1, 133–145 (1984).

    Google Scholar 

  68. V. A. Fok,Diffraction of Radio Waves Around the Surface of the Earth [in Russian], Academy of Sciences, Leningrad (1946).

    Google Scholar 

  69. E. L. Shenderov,Wave Problems of Hydroacoustics [in Russian], Sudostroenie, Leningrad (1972).

    Google Scholar 

  70. G. R. Barnard and C. M. McKinney, “Scattering of acoustic energy by solid and air-filled cylinders in water,”J. Acoust. Soc. Amer.,33, No. 2, 226–238 (1961).

    Google Scholar 

  71. L. Bauer, P. Tamarkin, and R. B. Lindsay, “The scattering of ultrasonic waves in water by cylindrical obstacles,”J. Acoust. Soc. Amer.,20, No. 6, 858–868 (1948).

    Google Scholar 

  72. H. L. Bertoni, and T. Tamir, “Unified theory of Rayleigh angle phenomena for acoustic beam at liquid-solid interfaces,”Appl. Phys.,2, No. 1, 157–172 (1973).

    Google Scholar 

  73. W.-M. Boerner, A. K. Jordan, and I. W. Kay, “Introduction to the special issue on inverse methods in electromagnetitics,”IEEE Trans., Antennas and Propag.,29, No. 2, 185–189 (1981).

    Google Scholar 

  74. D. Brill, G. C. Gaunaurd, and H. Überall, “Acoustic spectroscopy,”J. Acoust. Soc. Amer.,72, No. 3, 1067–1069 (1982).

    Google Scholar 

  75. R. E. Bunney, R. R. Goodman, and S. W. Marshall, “Rayleigh and Lamb waves on cylinders,”J. Acoust. Soc. Amer.,46, No. 5, 1223–1233 (1969).

    Google Scholar 

  76. D. Colton, “The inverse scattering problem for time-harmonic acoustic waves,”SIAM Rev.,26, No. 3, 323–350 (1984).

    Google Scholar 

  77. D. Colton and P. Monk, “A novel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region,”SIAM Appl. Math.,45, No. 6, 1039–1053 (1985).

    Google Scholar 

  78. D. Colton and B. D. Sleeman, “Uniqueness theorems for the inverse problem of acoustic scattering,”IMA J. Appl. Math.,31, No. 3, 253–259 (1983).

    Google Scholar 

  79. G. Dangelmayr, “Asymptotic inverse scattering,”Wave Motion,6, No. 4, 337–357 (1984).

    Google Scholar 

  80. J. J. Bowman et al.,Electromagnetic and Acoustic Scattering by Simple Shapes, North-Holland, Amsterdam (1969).

    Google Scholar 

  81. J. J. Faran, “Sound scattering by solid cylinders and spheres,”J. Acoust. Soc. Amer.,23, No. 4, 405–418 (1951).

    Google Scholar 

  82. L. Flax, G. C. Gaunaurd, and H. Überall, “Theory of resonance scattering,”Physical Acoustics: Principles and Methods,15, 191–294 (1981).

    Google Scholar 

  83. W. Franz, “Über die Greenschen Funktionen des Zylinders und der Kugel,”Z. Naturforsch.,9a, No. 9, 705–716 (1954).

    Google Scholar 

  84. A. Freedman, “A mechanism of acoustic echo formation,”Acustica,12, No. 1, 10–21 (1962).

    Google Scholar 

  85. A. Freedman, “The high frequency echo structure of some simple body shapes,”Acustica,12, No. 2, 61–70 (1962).

    Google Scholar 

  86. G. C. Gaunaurd, “Monostatic and bistatic cross sections of a large (capped) sphere partially insonified at a circular plot,”J. Acoust. Soc. Amer.,61, No. 5, 1121–1132 (1977).

    Google Scholar 

  87. G. C. Gaunaurd and H. Überall, “Acoustics of finite beams,”J. Acoust. Soc. Amer.,63, No. 1, 5–16 (1978).

    Google Scholar 

  88. L. D. Hampton and C. M. McKinney, “Experimental study of the scattering of acoustic energy from solid metal spheres in water,”J. Acoust. Soc. Amer.,33, No. 5, 664–673 (1961).

    Google Scholar 

  89. R. Hickling, “Analysis of echoes from a solid elastic sphere in water,”J. Acoust. Soc. Amer.,34, No. 10, 1582–1592 (1962).

    Google Scholar 

  90. R. Hickling, “Analysis of echoes from a hollow metallic sphere in water,”J. Acoust. Soc. Amer.,36, No. 6, 1127–1137 (1964).

    Google Scholar 

  91. C. W. Horton, “A review of reverberation, scattering, and echo structure,”J. Acoust. Soc. Amer.,51, No. 3, 1049–1061 (1972).

    Google Scholar 

  92. W. G. Neubauer, “Observation of acoustic radiation from plane and curved surfaces,”Physical Acoustics: Principles and Methods,10, 61–126 (1973).

    Google Scholar 

  93. T. D. K. Ngoc and W. G. Mayer, “Theoretical prediction of backscattering maximum at Rayleigh angle incident for a smooth liquid-solid interface,”J. Acoust. Soc. Amer.,75, No. 1, 186–188 (1984).

    Google Scholar 

  94. H. M. Nussenzweig, “High-frequency scattering by a transparent sphere. II. Theory of the rainbow and the glory,”J. Math. Phys.,10, No. 1, 125–176 (1969).

    Google Scholar 

  95. A. Schoch, “Schallreflexion, Schallbrechung, und Schallbeugung,”Ergeb. Ex. Naturwiss.,23, 127–134 (1950).

    Google Scholar 

  96. P. Tamarkin, “Scattering of an underwater ultrasonic beam from liquid cylindrical obstacles,”J. Acoust. Soc. Amer.,21, No. 6, 612–616 (1949).

    Google Scholar 

  97. H. Überall, “Surface waves in acoustics,”Physical Acoustics: Principles and Methods,10, 1–60 (1973).

    Google Scholar 

  98. H. Überall, “L'acoustique des faisceaux bornés,”Trait. Signal.,2, No. 3, 183–187 (1985).

    Google Scholar 

  99. H. Überall, “Acoustic scattering from elastic cylinders and spheres: surface waves (Watson transform) and transmitted waves,”Trait. Signal,2, No. 5, 353–357 (1985).

    Google Scholar 

  100. H. Überall, “Inverse scattering and acoustic resonance spectroscopy,”Trait. Signal.,2, No. 5, 479–484 (1985).

    Google Scholar 

  101. H. Überall and H. Huang, “Acoustical response of submerged elastic structures obtained through integral transforms,”Physical Acoustics: Principles and Methods,12, 217–275 (1976).

    Google Scholar 

  102. T. T. Wu, “High-frequency scattering,”Phys. Rev.,104, No. 5, 1201–1212 (1956).

    Google Scholar 

Download references

Authors

Additional information

Translated fromMatematicheskie Metody i Fiziko-Mekhanicheskie Polya, Issue 27, 1988, pp. 56–64.

In conclusion we note the papers [7, 74, 100] connected with the traditional method of solving inverse problems-the selection method.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poddubnyak, A.P., Emets, V.F. The current state of the problem of interaction of acoustic beams with obstacles in a deformable medium. J Math Sci 62, 2548–2556 (1992). https://doi.org/10.1007/BF01099147

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01099147

Keywords

Navigation