Skip to main content
Log in

Matrix pencils: Theory, applications, and numerical methods

  • Published:
Journal of Soviet Mathematics Aims and scope Submit manuscript

Abstract

This paper surveys nearly all of the publications that have appeared in the last twenty years on the theory of and numerical methods for linear pencils. The survey is divided into the following sections: theory of canonical forms for symmetric and Hermitian pencils and the associated problem of simultaneous reduction of pairs of quadratic forms to canonical form; results on perturbation of characteristic values and deflating subspaces; numerical methods. The survey is self-contained in the sense that it includes the necessary information from the elementary theory of pencils and the theory of perturbations for the common algebraic problem Ax=λx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Bath and E. Wilson, Numerical Methods and Finite Element Analysis, Prentice Hall, Englewood Cliffs (1976).

    Google Scholar 

  2. R. Bellman, Introduction to Matrix Analysis, McGraw Hill, New York (1967).

    Google Scholar 

  3. F. R. Gantmakher, Matrix Theory [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  4. N. V. Efimov and É. R. Rozendorn, Linear Algebra and Multidimensional Geometry [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  5. Kh. D. Ikramov, Handbook of Linear Algebra [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  6. Kh. D. Ikramov, Numerical Solution of Matrix Equations: Orthogonal Methods [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  7. Kh. D. Ikramov, “Deflating subspaces of regular pairs of matrices,” in: Numerical Analysis: Methods, Algorithms, and Programs [in Russian], Izd. MGU, Moscow (1988).

    Google Scholar 

  8. Kh. D. Ikramov, The Asymmetric Characteristic Value Problem [in Russian], Nauka, Moscow (1991).

    Google Scholar 

  9. Kh. D. Ikramov and I. N. Molchanov, “Singular decomposition algorithm for multiprocessor machines with parallel execution,” Kibernetika, No. 2, 99–102 (1986).

    Google Scholar 

  10. A. V. Knyazev, Computation of Characteristic Values and Vectors in Grid Problems: Algorithms and Error Estimates [in Russian], Old. Vychisl. Mat. Akad. Sci. SSSR, Moscow (1986).

    Google Scholar 

  11. V. N. Kublanovskaya, V. B. Khazanov, and V. A. Belyi, “Spectral problems for matrix pencils. Methods and Algorithms. I–III,” Preprints of the Leningrad. Otd. Mat. Inst. Akad. Nauk SSSR, Leningrad (1988).

  12. C. Lawson and R. Hanson, Solving Least Squares Problems, Prentice Hall, Englewood Cliffs (1974).

    Google Scholar 

  13. M. Marcus and H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Allyn and Bacon, Boston (1964).

    Google Scholar 

  14. B. Parlett, The Symmetric Eigenvalue Problem, Prentice Hall, Englewood Cliffs (1980).

    Google Scholar 

  15. J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford (1965).

    Google Scholar 

  16. D. K. Faddeev, V. N. Kublanovskaya, and V. N. Faddeeva, “Linear algebraic systems with rectangular matrices,” in: Modern Numerical Methods [in Russian], VTs Akad. Nauk SSSR, Moscow (1968).

    Google Scholar 

  17. D. K. Faddeev and I. S. Sominskii, A Collection of Problems in Higher Algebra [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  18. D. K. Faddeev and V. N. Faddeeva, Computational Methods for Linear Algebra [in Russian], Fizmatgiz, Moscow-Leningrad (1963).

    Google Scholar 

  19. R. Horn and C. Johnson, Matrix Analysis [Russian translation], Mir, Moscow (1989).

    Google Scholar 

  20. Au-Yeung Yik Hoi, “A theorem on a mapping from a sphere to the circle and the simultaneous diagonalization of two Hermitian matrices,” Proc. Am. Math. Soc.,20, No. 2, 545–548 (1969).

    Google Scholar 

  21. C. S. Ballantine, “Numerical range of a matrix: some effective criteria,” Linear Algebra and Appl.,19, No. 2, 117–188 (1978).

    Google Scholar 

  22. W. B. Bickford, “An improved computational technique for perturbation of the generalized symmetric linear algebraic eigenvalue problem,” Int. J. Numer. Meth. Eng.,24, No. 3, 529–541 (1987).

    Google Scholar 

  23. A. J. Bosch, “The factorization of a square matrix into two symmetric matrices,” Am. Math. Mon,93, No. 6, 462–464 (1986).

    Google Scholar 

  24. A. J. Bosch, “Note on the factorization of a square matrix into two Hermitian or symmetric matrices,” SIAM Rev.,29, 463–468 (1987).

    Google Scholar 

  25. M. A. Brebner and J. Grad, “Eigenvalues of Ax=λBx for real symmetric matrices A and B computed by reduction to a pseudosymmetric form and the HR process,” Linear Algebra and Appl.,43, 99–118 (1982).

    Google Scholar 

  26. L. Brickman, “On the field of values of a matrix,” Proc. Am. Math. Soc.,12, No. 1, 61–66 (1961).

    Google Scholar 

  27. K. W. Brodlie and M. J. D. Powell, “On the convergence of cyclic Jacobi methods,” J. Inst. Math. and Appl.,15, No. 3, 279–287 (1975).

    Google Scholar 

  28. A. Bunse-Gerstner, “An algorithm for the symmetric generalized eignevalue problem,” Linear Algebra and Appl,58, 43–68 (1984).

    Google Scholar 

  29. Cao Zhi-hao, “Residual error bounds of generalized eigenvalue systems,” Linear Algebra and Appl.,93, 113–120 (1987).

    Google Scholar 

  30. K.-W. E. Chu, “The solution of the matrix equations AXB-CXD=E and (YA-DZ, YC-BZ)=(E, F),” Linear Algebra and Appl.,93, 93–105 (1987).

    Google Scholar 

  31. K.-W. E. Chu, “Exclusion theorems and the perturbation analysis of the generalized eigenvalue problem,” SIAM J. Numer. Anal.,24, No. 5, 1114–1125 (1987).

    Google Scholar 

  32. C. R. Crawford, “Reduction of a band-symmetric generalized eigenvalue problem,” Comm. ACM,16, No. 1, 41–44 (1973).

    Google Scholar 

  33. C. R. Crawford, “A stable generalized eigenvalue problem,” SIAM J. Numer. Anal.,13, No. 6, 854–860 (1976). Errata, SIAM J. Numer. Anal.,15, No. 5, 1070 (1978).

    Google Scholar 

  34. C. R. Crawford, “Algorithm 646: PDFIND —a routine to find a positive definite linear combination of two real symmetric matrices,” ACM Trans. Math. Software,12, No. 3, 278–282 (1986).

    Google Scholar 

  35. C. R. Crawford and Moon Yiu Sang, “Finding a positive definite linear combination of two Hermitian matrices,” Linear Algebra and Appl.,51, 37–48 (1983).

    Google Scholar 

  36. C. Davis and W. M. Kahan, “The rotation of eigenvectors by a perturbation. III,” SIAM J. Numer. Anal.,7, No. 1, 1–46 (1970).

    Google Scholar 

  37. D. C. Dzeng and W. W. Lin, “HMDR and FMDR algorithms for the generalized eigenvalue problem,” Linear Algebra and Appl.,112, 169–187 (1989).

    Google Scholar 

  38. L. Elsner and P. Lancaster, “The spectral variation of pencils of matrices,” J. Comput. Math.,3, No. 3, 262–274 (1985).

    Google Scholar 

  39. L. Elsner and Sun Ji-guang, “Perturbation theorems for the generalized eigenvalue problem,” Linear Algebra and Appl.,48, 341–357 (1982).

    Google Scholar 

  40. T. Ericsson and A. Ruhe, “Lanczos algorithms and field of value rotations for symmetric matrix pencils,” Linear Algebra and Appl.,88/89, 733–746 (1987).

    Google Scholar 

  41. S. Falk, “Ein Einschliessungssatz für die Eigenwerte eines Matrizenpaares mit Hilfe verschiedener Normen,” Z. Angew. Math, und Mech.,63, No. 5, 343–345 (1983).

    Google Scholar 

  42. S. Falk and P. Langemeyer, “Das Jacobische Rotationsverfahren für reel-symmetrische Matrizenpaare. I, II,” Electron. Datenverarb.,2, 30–34, 35–43 (1960).

    Google Scholar 

  43. P. Finsler, “Über das Vorkommen definiter und semidefiniter Formen in Scharen quadratischer Formen,” Comment. Math. Helv.,9, 188–192 (1936/37).

    Google Scholar 

  44. G. Fix and R. Heiberger, “An algorithm for the ill-conditioned generalized eigenvalue problem,” SIAM J. Numer. Anal.,9, No. 1, 78–88 (1972).

    Google Scholar 

  45. D. W. Fox, “Changes in relative matrix eigenvalues,” in: Inf. Linkage Between Appl. Math. and Ind., Proc. First Ann. Workshop, Monterey, 1978, New York (1979), pp. 409–420.

  46. S. Friedland and R. Loewy, “Subspaces of symmetric matrices containing matrices with a multiple first eigenvalue,” Pac. J. Math.,62, No. 2, 389–399 (1976).

    Google Scholar 

  47. I. Gohberg, P. Lancaster, and L. Rodman, Matrix Polynomials, Academic Press, New York-London (1982).

    Google Scholar 

  48. I. Gohberg, P. Lancaster, and L. Rodman, Matrices and Indefinite Scalar Products, Birkhäuser, Basel-Boston-Stuttgart (1983).

    Google Scholar 

  49. G. Gose, “Das Jacobi-Verfahren für Ax=λBx,” Z. Angew. Math. und Mech.,59, No. 2, 93–101 (1979).

    Google Scholar 

  50. W. Graeub, Lineare Algebra, Springer, Berlin (1958).

    Google Scholar 

  51. C. D. Ikramov, Problemi di Algebra Lineare, Edizioni Mir (1986).

  52. W. M. Kahan, B. N. Parlett, and E. Jiang, “Residual bounds on approximate eigensystems of nonnormal matrices,” SIAM J. Numer. Anal.,19, No. 3, 470–484 (1982).

    Google Scholar 

  53. L. Kronecker, Algebraische Reduktion der Scharen bilinearer Formen, Akademie Berlin, Sitzungsber. (1890).

    Google Scholar 

  54. K. N. Majinder, “Linear combinations of Hermitian and real symmetric matrices,” Amer. Math. Mon.,70, 842–844 (1963).

    Google Scholar 

  55. K. N. Majinder, “Linear combinations of Hermitian and real symmetric matrices,” Linear Algebra and Appl.,25, 95–105 (1979).

    Google Scholar 

  56. M. Marcus, “Pencils of real symmetric matrices and the numerical range,” Aequat. Math.,17, No. 1, 91–103 (1978).

    Google Scholar 

  57. J. J. Modi, R. O. Davies, and D. Parkinson, “Extension of the parallel Jacobi method to the generalized eigenvalue problem,” in: Parallel Comput. 83: Proc. Int. Conf., Berlin, 26–28 Sept. 1983, Amsterdam (1984), pp. 191–197.

  58. E. Pesonen, “Über die Spectraldarstellung quadratischer Formen in linearen Räumen mit indefiniter Metrik,” Ann. Acad. Sci. Fenn. Ser. A,1, 227–231 (1956).

    Google Scholar 

  59. Shi Jilin and Xiao Ting, “Error bounds on perturbation of eigenvalue of arbitrary matrix,” Numer. Math. J. Chin. Univ,9, No. 2, 190–192 (1987).

    Google Scholar 

  60. G. W. Stewart, “On the sensitivity of the eigenvalue problem Ax=λBx,” SIAM J. Numer. Anal.,9, No. 4, 669–686 (1972).

    Google Scholar 

  61. G. W. Stewart, “Error and perturbation bounds for subspaces associated with certain eigenvalue problems,” SIAM Rev.,15, No. 4, 727–764 (1973).

    Google Scholar 

  62. G. W. Stewart, “Gershgorin theory for the generalized eigenvalue problem Ax=λBx,” Math. Comput.,29, No. 130, 600–606 (1975).

    Google Scholar 

  63. G. W. Stewart, “Perturbation bounds for the definite generalized eigenvalue problem,” Linear Algebra and Appl.,23, 69–85 (1979).

    Google Scholar 

  64. Sun Ji-guang, “A note on Stewart's theorem for definite matrix pairs,” Linear Algebra and Appl.,48, 331–339 (1982).

    Google Scholar 

  65. Sun Ji-guang, “The perturbation bounds for eigenspaces of a definite matrix-pair,” Numer. Math.,41, No. 3, 321–343 (1983).

    Google Scholar 

  66. Sun Ji-guang, “Perturbation analysis for the generalized eigenvalue and the generalized singular value problem,” Lect. Notes Math.,973, 221–244 (1983).

    Google Scholar 

  67. O. Taussky, “Positive definite matrices,” in: Inequalities, Academic Press, New York-London (1967).

    Google Scholar 

  68. O. Taussky, “The role of symmetric matrices in the study of general matrices,” Linear Algebra and Appl.,5, No. 2, 147–154 (1972).

    Google Scholar 

  69. F. Uhlig, “Simultaneous block diagonalization of two real symmetric matrices,” Linear Algebra and Appl.,7, No. 4, 281–289 (1973).

    Google Scholar 

  70. F. Uhlig, “The number of vectors jointly annihilated by two real quadratic forms determines the inertia of matrices in the associated pencil,” Pac. J. Math.,49, No. 2, 537–542 (1973).

    Google Scholar 

  71. F. Uhlig, “Definite and semidefinite matrices in a real symmetric matrix pencil,” Pac. J. Math.,49, No. 2, 561–568 (1973).

    Google Scholar 

  72. F. Uhlig, “On the maximal number of linearly independent real vectors annihilated simultaneously by two real quadratic forms,” Pac. J. Math.,49, No. 2, 543–560 (1973).

    Google Scholar 

  73. F. Uhlig, “A recurring theorem about pairs of quadratic forms and extensions: A survey,” Linear Algebra and Appl.,25, 219–237 (1979).

    Google Scholar 

  74. H. A. Välliaho, “A note on locating eigenvalues,” Computing,37, No. 3, 265–267 (1986).

    Google Scholar 

  75. C. F. Van Loan, “A general matrix eigenvalue algorithm,” SIAM J. Numer. Anal.,12, No. 6, 819–834 (1975).

    Google Scholar 

  76. K. Veselić, “A global Jacobi method for a symmetric indefinite problem Sx=λTx,” Comput. Meth. Appl. Mech. and Eng.,38, No. 3, 273–290 (1983).

    Google Scholar 

  77. K. Weierstrass, “Zur Theorie der bilinearen und quadratischen Formen,” Monatsk. Akad. Wissenschaft, 310–338 (1867).

  78. H. Wielandt, “An extremum property of sums of eigenvalues,” Proc. Am. Math. Soc.,6, No. 1, 106–110 (1955).

    Google Scholar 

Download references

Authors

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Matematicheskii Analiz, Vol. 29, pp. 3–106, 1991.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikramov, K.D. Matrix pencils: Theory, applications, and numerical methods. J Math Sci 64, 783–853 (1993). https://doi.org/10.1007/BF01098963

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01098963

Keywords

Navigation