Skip to main content
Log in

Theory of regimes with peaking in compressible media

  • Published:
Journal of Soviet Mathematics Aims and scope Submit manuscript

Abstract

The basic ideas and results of investigations of the effect on a compressible medium of a special class of gas-dynamic and thermal regimes (regimes with peaking) are expounded. A mathematical description is given of new phenomena caused by such effects (the effect of localization, formation of structures, shockless compression of continuous media). The mathematical model studied was used in a number of applications, in particular, to problems of the physics of plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. M. M. Ad'yutov, Yu. A. Klokov, and A. P. Mikhailov, “Self-similar heat structures with contracted half width,” Differents. Uravn.,19, No. 7, 1107–1114 (1983).

    Google Scholar 

  2. G. B. Alalykin, A. V. Zabrodin, G. N. Novozhilova, and L. A. Pliner, “On some calculations in estimating the effect of nonsymmetry on the motion of the deuterium-tritium drop under the action of a laser impulse,” in: Materials of the Combined Seminar on Computational Physics (Sukhumi, 1973). Tbilisi State Univ. (1976), pp. 17–22.

  3. S. G. Alikhanov and I. K. Konkashbaev, “Equilibrium distributions of temperature and pressure in stationary discharge with radiation,” Zh. Prikl. Mekh. Tekh. Fiz., No. 4, 133–135 (1971).

    Google Scholar 

  4. S. I. Anisimov, M. F. Ivanov, N. A. Inogamov, P. P. Pashinin, and A. M. Prokhorov, “Numerical modeling of processes of laser compression and heating of simple coated targets,” Fiz. Plazmy, No. 3, 723–735 (1977).

    Google Scholar 

  5. S. I. Anisimov and N. A. Inogamov, “Singular self-similar regimes of superdense compression of laser targets,” Prikl. Mat. Mekh., No. 4, 20–24 (1980).

    Google Scholar 

  6. M. A. Anufrieva, M. A. Demidov, A. P. Mikhailov, and V. V. Stepanova, “Regimes with peaking in problems of gas dynamics,” in: Mathematical Models, Analytic and Numerical Methods in Transport Theory, Izd. Inst. Teplo- i Massoobmena AN BSSR, Minsk, 1982, pp. 19–25.

    Google Scholar 

  7. M. A. Anufrieva and A. P. Mikhailov, “Localization of gas-dynamical processes in isentropic compression of a gas in a regime with peaking,” Differents. Uravn.,19, No. 3, 483–491 (1983).

    Google Scholar 

  8. M. A. Anufrieva and A. P. Mikhailov, “Unbounded solutions of the quasilinear transport equation, Preprint IPMat. AN SSSR, No. 34 (1985).

  9. Yu. V. Afanas'ev, N. G. Basov, P. P. Volosevich, E. G. Gamalii, O. N. Krohkin, S. P. Kurdyumov, E. I. Levanov, V. B. Rozanov, A. A. Samarskii, and A. N. Tikhonov, “Laser induction of a thermonuclear reaction in inhomogeneous spherical targets,” Pis'ma Zh. Éksp. Teor. Fiz.,21, No. 2, 150–155 (1975).

    Google Scholar 

  10. Yu. V. Afanas'ev, E. G. Gamalii, O. N. Krokhin, and V. B. Rozanov, “Acceleration, compression, and stability of a plane layer of matter under the action of laser radiation,” Prikl. Mat. Mekh.,39, 451–457 (1975).

    Google Scholar 

  11. T. S. Akhromeeva, S. P. Kurdyumov, and G. G. Malinetskii, Paradoxes of the World of Nonstationary Structures [in Russian], Znanie, Moscow (1985).

    Google Scholar 

  12. G. I. Barenblatt and Ya. B. Zel'dovich, “Intermediate asymptotics of mathematical physics,” Usp. Mat. Nauk,26, No. 2, 115–129 (1971).

    Google Scholar 

  13. V. A. Belokon', “On achievability of ultrahigh quasi-one-dimensional compression,” Dokl. Akad. Nauk SSSR,268, No. 1, 86–90 (1983).

    Google Scholar 

  14. V. A. Belokon', A. V. Zabrodin, Ya. M. Kazhdan, A. M. Svalov, and R. V. Khokhlov, “An example of ultrahigh compression,” Preprint IPMat. AN SSSR, No. 39, Moscow (1978).

  15. S. I. Braginski, “Transport phenomena in a plasma,” in: Questions of the Theory of Plasma [in Russian], Issue I, Gosatomizdat, Moscow (1963), pp. 183–272.

    Google Scholar 

  16. K. V. Brushlinskii and Ya. M. Kazhdan, “On self-similar solutions of some problems of gas dynamics,” Usp. Mat. Nauk,18, No. 2, 3–37 (1963).

    Google Scholar 

  17. A. A. Bunatyan, V. E. Neuvazhaev, L. P. Strotseva, and V. D. Frolov, “Numerical investigation of the development of perturbations in compression of a target by a sharp impulse,” in: Numerical Methods in Plasma Physics [in Russian], Nauka, Moscow (1978), pp. 83–89.

    Google Scholar 

  18. N. I. Vasil'ev and Yu. A. Klokov, Foundations of the Theory of Boundary Value Problems for Ordinary Differential Equations [in Russian], Znaniya, Riga (1978).

    Google Scholar 

  19. P. P. Volosevich, “The motion of gas in front of a piston in a magnetic field in the case of nonlinear heat conduction and conductivity,” in: Numerical Methods of Solving Problems of Mathematical Physics [in Russian], Nauka, Moscow (1966), pp. 103–112.

    Google Scholar 

  20. P. P. Volosevich, V. Ya. Gol'din, N. N. Kalitkin, S. P. Kurdyumov, Yu. P. Popov, V. B. Rozanov, A. A. Samarskii, and B. N. Chetverushkin, “Some stages of strong point discharge in a plasma,” Preprint IPMat. AN SSSR, No. 40, Moscow (1971).

  21. P. P. Volosevich, N. A. Dar'in, E. V. Ermolin, E. I. Levanov, and S. G. Mukhambetzhanov, “Invariant solutions of the equations of gas dynamics with consideration of thermal conductivity and a source (in Lagrangian coordinates),” Preprint IPMat. AN SSSR, No. 29, Moscow (1984).

  22. P. P. Volosevich, L. M. Degtyarev, S. P. Kurdyumov, E. I. Levanov, Yu. P. Popov, A. A. Samarskii, and A. P. Favorskii, “The process of superhigh compression of matter and initiation of a thermonuclear reaction by a powerful impulse of laser radiation,” Fiz. Plazray,2, No. 6, 883–897 (1976).

    Google Scholar 

  23. P. P. Volosevich, S. P. Kurdyumov, and E. I. Levanov, “Various regimes of thermal heating in the interaction of powerful fluxes of radiation with matter,” Zh. Prikl. Mekh. Tekh. Fiz., No. 5, 41–48 (1972).

    Google Scholar 

  24. P. P. Volosevich, S. P. Kurdyumov, Yu. P. Popov, and A. A. Samarskii, “A self-similar problem on a strong point discharge in a plamsa,” Zh. Vychisl. Mat. Mat. Fiz.,10, No. 6, 1447–1457 (1971).

    Google Scholar 

  25. P. P. Volosevich and E. I. Levanov, “A self-similar problem on the method of a flat piston in a thermally conducting gas in the presence of a frozen-in magnetic field,” in: Numerical Methods of Solving Problems of Mathematical Physics [in Russian], Nauka, Moscow (1966), pp. 87–102.

    Google Scholar 

  26. P. P. Volosevich and E. I. Levanov, “Solution of a self-similar problem on the flow of gas into a vacuum in the two-temperature hydrodynamic approximation,” Zh. Vychisl. Mat. Mat. Fiz.,15, No. 3, 702–712 (1975).

    Google Scholar 

  27. P. P. Volosevich and E. I. Levanov, “Some self-similar problems of gas dynamics with consideration of additional nonlinear effects,” Differents. Uravn.,17, No. 7, 1200–1213 (1981).

    Google Scholar 

  28. P. P. Volosevich and V. S. Sokolov, “A self-similar problem on the dispersion of an electrically conducting gas into a medium with a given axial magnetic field,” Magn. Gidrodin., No. 1, 43–46 (1967).

    Google Scholar 

  29. V. A. Galaktionov, “On conditions of localization of unbounded solutions of quasilinear parabolic equations,” Dokl. AN SSSR,264, No. 5, 1035–1040 (1982).

    Google Scholar 

  30. V. A. Galaktionov, “Proof of localization of unbounded solutions of the nonlinear parabolic equations ut=(uσux)x + uα,” Differents. Uravn.,21, No. 1, 15–23 (1985).

    Google Scholar 

  31. V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, and A. A. Samarskii, “The asymptotic stage of regimes with peaking and effective localization of heat in problems on nonlinear heat conduction,” Differents. Uravn.,16, No. 7, 1196–1204 (1980).

    Google Scholar 

  32. V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, and A. A. Samarskii, “Localization of heat in nonlinear media,” Differents. Uravn.,17, No. 10, 1826–1841 (1981).

    Google Scholar 

  33. V. A. Galaktionov, S. P. Kurdyumov, and A. A. Samarskii, “On a parabolic system of quasilinear equations. I,” Differents. Uravn.,19, No. 12, 2123–2140 (1983).

    Google Scholar 

  34. V. A. Galaktionov, S. P. Kurdyumov, and A. A. Samarskii, “On approximate self-similar solutions of a class of quasilinear heat equations with a source,” Mat. Sb.,124, No. 2, 163–188 (1984).

    Google Scholar 

  35. V. A. Galaktionov, S. P. Kurdyumov, and A. A. Samarskii, “On a method of stationary states for nonlinear evolution parabolic problems,” Dokl. AN SSSR,278, No. 6, 1296–1300 (1984).

    Google Scholar 

  36. V. A. Galaktionov, S. P. Kurdyumov, and A. A. Samarskii, “On a parabolic system of quasilinear equations. II,” Differents. Uravn.,21, No. 9, 1544–1559 (1985).

    Google Scholar 

  37. V. A. Galaktionov and S. A. Posashkov, “New versions of the use of the strong maximum principle for parabolic equations and some of their applications,” Preprint IPMat. AN SSSR, No. 167, Moscow (1985).

  38. V. A. Gasilov, N. V. Zmitrenko, V. Ya. Karpov, A. Yu. Krukovskii, and D. V. Podlesnyi, “The effect of thermoelectric phenomena on the dynamics of a theta-pinch,” Preprint IPMat. AN SSSR, No. 26, Moscow (1984).

  39. P. Glensdorf and I. Prigozhin, Thermodynamic Theory of Structure, Stability, and Fluctuations [Russian translation], Mir, Moscow (1973).

    Google Scholar 

  40. S. S. Grigoryan, “The Cauchy problem and the problem of a piston for one-dimensional non-steady-state motions of gas (self-similar motions),” Prikl. Mat. Mekh.,22, No. 2, 179–187 (1958).

    Google Scholar 

  41. S. G. Grigoryan, “Limiting self-similar, one-dimensional, non-steady-state motions of a gas (the Cauchy problem and the problem of a piston),” Prikl. Mat. Mekh.,22, No. 6, 301–310 (1958).

    Google Scholar 

  42. V. V. Gudkov, A. P. Mikhailov, and V. V. Stepanova, “On asymptotics of solutions of a self-similar problem of gas dynamics with nonlinear heat conduction,” in: Nonlinear Boundary Value Problems for Ordinary Differential Equations [in Russian], Leningrad State Univ., Riga (1985), pp. 133–156.

    Google Scholar 

  43. N. A. Dar'in, “Self-similar problems of gas dynamics with an energy source and sink,” Tr. Mosk. Fiz.-Tekh. Inst., Ser. Aérofiz. Prikl. Mat., Moscow (1981), pp. 147–149.

  44. L. M. Degtyarev, L. A. Zaklyaz'minskii, S. P. Kurdyumov, A. A. Samarskii, V. S. Sokolov, and A. P. Favorskii, “Evolution of finite, local perturbations of electrical conductivity in a flow of a weakly conducting gas in the presence of a magnetic field,” Teplofiz. Vys. Temp.,7, No. 3, 471–478 (1969).

    Google Scholar 

  45. M. A. Demidov, “Flows of gas with a homogeneous spatial density,” Preprint IPMat. AN SSSR, No. 126, Moscow (1985).

  46. M. A. Demidov, “On construction of solutions describing the effect of localization in some compressible media,” Preprint IPMat. AN SSSR, No. 1, Moscow (1986).

  47. M. A. Demidov, Yu. A. Klokov, and A. P. Mikhailov, “Shockless compression of a finite mass of gas by a flat piston for an arbitrary entropy distribution,” Preprint IPMat. AN SSSR, No. 151, Moscow (1984).

  48. M. A. Demidov, Yu. A. Klokov, and A. P. Mikhailov, “Structures in the shockless spherical compression of gas with an arbitrary entropy distribution,” Preprint, IPMat. AN SSSR, No. 73, Moscow (1985).

  49. M. A. Demidov and A. P. Mikhailov, “Joint localization of processes of compression and heating in a thermally conducting gas, Preprint, IPMat. AN SSSR, No. 163, Moscow (1984).

  50. M. A. Demidov and A. P. Mikhailov, “Conductions for the occurrence of the effect of localization of gas-dynamical processes,” Preprint IPMat. AN SSSR, No. 9, Moscow (1985).

  51. M. A. Demidov and A. P. Mikhailov, “Multidimensional flows with a homogeneous density and the effect of localization,” Preprint, UPMat. AN SSSR, No. 53, Moscow (1986).

  52. M. A. Demidov and A. P. Mikhailov, “Effect of localization and formation of structures in compression of a finite mass of gas in a regime with peaking,” Prikl. Mat. Mekh.,50, No. 1, 119–127 (1986).

    Google Scholar 

  53. M. A. Demidov, A. P. Mikhailov, and V. V. Stepanova, “Localization and structures in the compression of a gas in a regime with peaking,” Dokl. AN SSSR,281, No. 1, 41–46 (1985).

    Google Scholar 

  54. V. V. Demchenko, “A comparative investigation of some hydromechanical processes of compression,” Zh. Vychisl. Mat. Mat. Fiz.,19, No. 2, 540–545 (1979).

    Google Scholar 

  55. V. A. Dorodnitsyn, “On invariant solutions of nonstationary magnetohydrodynamics with finite conductivity,” Preprint IPMat. AN SSSR, No. 143, Moscow (1976).

  56. V. A. Dorodnitsyn and Yu. P. Popov, “On stationary regimes of a radiating, strongly focused, self-compressed discharge,” Zh. Vychisl. Mat. Mat. Fiz.,13, No. 1, 247–253 (1973).

    Google Scholar 

  57. G. G. Elenin and S. P. Kurdyumov, “Conditions for complicating the organization of a nonlinear dissipative medium,” Preprint IPMat. AN SSSR, No. 106, Moscow (1977).

  58. G. C. Elenin, S. P. Kurdyumov, and A. A. Samarskii, “Nonstationary dissipative structures in a nonlinear, thermally conducting medium,” Zh. Vychisl. Mat. Mat. Fiz.,23, No. 2, 380–390 (1983).

    Google Scholar 

  59. S. K. Zhdanov and B. A. Trubnikov, “Optimal compression of a plasma in Z- and θ-pinch,” Pis'ma Zh. Éksp. Teor. Fiz.,21, No. 6, 371–374 (1975).

    Google Scholar 

  60. I. E. Zababakhin and V. A. Simonenko, “A spherical centered compression wave,” Prikl. Mat. Mekh.,42, No. 3, 573–576 (1978).

    Google Scholar 

  61. A. I. Zakharov, V. V. Klavdiev, V. D. Pis'mennyi, L. Rotkhart, V. B. Saenko, A. N. Starostin, and G. Yan, “Experimental observations of T-layers in a moving plasma interacting with a magnetic field,” Dokl. AN SSSR,212, No. 5, 1092–1095 (1973).

    Google Scholar 

  62. Ya. B. Zel'dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydromechanical Phenomena [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  63. N. V. Zmitrenko, “Description of processes of compression and rarefaction of a finite mass of plasma by means of the method of separation of variables,” Prof. Internat. Congress of Mathematicians, ISM-82, Brief. Comm., Warsaw, Vol. 11 (1983), p. 28.

    Google Scholar 

  64. N. V. Zmitrenko, “An example of a gas-dynamical dissipative system with reverse course of time,” Zh. Anal. Prilozhen. (GDR),2, No. 4, 321–327 (1983).

    Google Scholar 

  65. N. V. Zmitrenko and S. P. Kurdyumov, “Self-similar solutions of compression of a plasma by a piston,” in: Heat and Mass Transport. Coll. of Repts. of IV All-Union Conf. on Heat and Mass Exchange, Vol. VIII, Inst. Teplo- i Massoobmena AN BSSR, Minsk (1972), pp. 432–439.

    Google Scholar 

  66. N. V. Zmitrenko and S. P. Kurdyumov, “A self-similar regime of compression of a finiteness mass of plasma,” Preprint IPMat. AN SSSR, No. 16, Moscow (1973).

  67. N. V. Zmitrenko and S. P. Kurdyumov, “A self-similar regime of compression of a finite mass of plasma in problems of Z-theta-pinch,” Preprint IPMat. AN SSSR, No. 19, Moscow (1974).

  68. N. V. Zmitrenko and S. P. Kurdyumov, “A self-similar regime of compression of a finite mass,” Dokl. AN SSSR,218, No. 6, 1306–1309 (1974).

    Google Scholar 

  69. N. V. Zmitrenko and S. P. Kurdyumov, “Occurrence of structures in a self-similar regime of compression of a plasma,” Dokl. AN SSSR,219, No. 3, 578–581 (1974).

    Google Scholar 

  70. N. V. Zmitrenko and S. P. Kurdyumov, “N- and S-regimes of self-similar compression of a finite mass of plasma and singularities of regimes with peaking,” Zh. Prikl. Mekh. Tekh. Fiz., No. 1, 3–23 (1977).

    Google Scholar 

  71. N. V. Zmitrenko and S. P. Kurdyumov, “The possibility of using heat localization in regimes of compression of theta-pinch with peaking,” Preprint IPMat. AN SSSR, No. 153, Moscow (1980).

  72. N. V. Zmitrenko and S. P. Kurdyumov, “Regimes of compression and rarefaction of a finite mass of plasma admitting time reversal in a dissipative medium,” Preprint IPMat. AN SSSR, No. 39, Moscow (1981).

  73. N. V. Zmitrenko, S. P. Kurdyumov, A. P. Mikhailov, and A. A. Samarskii, “Nonlinear skin singularitis,” in: Coll. Annotations of Reports at the II International Conf. on the Theory of Plasma [in Russian], Naukova Dumka, Kiev (1974), p. 148.

    Google Scholar 

  74. N. V. Zmitrenko, S. P. Kurdyumov, A. P. Mikhailov, and A. A. Samarskii, “Occurrence of structures in nonlinear media and nonstationary thermodynamics of regimes with peaking,” Preprint IPMat. AN SSSR, No. 74, Moscow (1976).

  75. N. V. Zmitrenko, S. P. Kurdyumov, A. P. Mikhailov, and A. A. Samarskii, “Localization of thermonuclear combustion in a plasma with electron thermal conductivity,” Pis'ma Zh. Éksp. Teor. Fiz.,26, No. 9, 620–624 (1977).

    Google Scholar 

  76. N. V. Zmitrenko, S. P. Kurdyumov, A. P. Mikhailov, and A. A. Samarskii, “Metastable localization of heat in a medium with nonlinear heat conduction and conditions for its occurrence in experiment,” Preprint IPMat. AN SSSR, No. 103, Moscow (1977).

  77. N. V. Zmitrenko and A. P. Mikhailov, Heat Inertia [in Russian], Znanie, Moscow (1982).

    Google Scholar 

  78. N. Kh. Ibragimov, Transformation Groups in Mathematical Physics [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  79. B. B. Kadomtsev, “Hydromagnetic stability of a plasma,” in: Questions of the Theory of Plasma [in Russian], Issue 2, Gosatomizdat, Moscow (1963).

    Google Scholar 

  80. Ya. M. Kazhdan, “On the question of adiabatic compression of a gas under the action of a spherical piston,” Preprint IPMat. AN SSSR, No. 89, Moscow (1975).

  81. Ya. M. Kazhdan, “On the question of the adiabatic compression of a gas under the action of a spherical piston,” Zh. Prikl. Mekh. Tekh. Fiz., No. 1, 23–30 (1977).

    Google Scholar 

  82. Ya. M. Kazhdan, “Adiabatic compression of a gas under the action of a cylindrical piston,” Preprint IPMat. AN SSSR, No. 56, Moscow (1980).

  83. A. S. Kalashnikov, “On the character of propagation of perturbations in problems of nonlinear heat conduction with absorption,” Zh. Vychisl. Mat. Mat. Fiz.,14, No. 4, 891–905 (1974).

    Google Scholar 

  84. A. S. Kalashnikov, “On the effect of absorption on the propagation of heat in a medium with thermal conductivity depending on temperature,” Zh. Vychisl. Mat. Mat. Fiz.,16, No. 3, 689–697 (1976).

    Google Scholar 

  85. V. I. Kosarev and A. M. Svalov, “On the question of optimization of the compression of a spherical mass of gas,” Zh. Prikl. Mekh. Tekh. Fiz., No. 11, 54–59 (1983).

    Google Scholar 

  86. N. N. Konchina and N. S. Mel'nikova, “On non-steady-state motion of a gas displaced by a piston without consideration of backpressure,” Prikl. Mat. Mekh.,22, No. 4, 444–451 (1958).

    Google Scholar 

  87. N. L. Krashenninnikova, “On non-steady-state motion of a gas displaced by a piston,” Izv. AN SSSR, Otd. Tekh. Nauk, No. 8, 22–35 (1955).

    Google Scholar 

  88. S. P. Kurdyumov, “Nonlinear processes in a dense plasma,” in: Problems of the Theory of Plasma. Repts. of the II Int. Conf. on the Theory of Plasma (Kiev, 1984), Naukova Dumka, Kiev (1976), pp. 278–288.

    Google Scholar 

  89. S. P. Kurdyumov, “Nonlinear processes in a dense plasma,” Preprint IPMat. AN SSSR, No. 18, Moscow (1975).

  90. S. P. Kurdyumov, “Localization of heat in nonlinear media,” Preprint IPMat. AN SSSR, No. 39, Moscow (1976).

  91. S. P. Kurdyumov, “On the physics of a plasma with a superheated instability,” in: Materials of the Combined Seminar on Computational Physics (Sukhumi, 1973), Tbilisi State Univ. (1976), pp. 165–177.

  92. S. P. Kurdyumov, “Eigenfunctions of combustion of a nonlinear medium and constructive laws of construction of its organization,” Preprint IPMat. AN SSSR, No. 29, Moscow (1979).

  93. S. P. Kurdyumov, “Eigenfunctions of combustion of a nonlinear medium and constructive laws of construction of its organization,” in: Modern Problems of Mathematical Physics and Computational Mathematics [in Russian], Nauka, Moscow (1982), pp. 217–243.

    Google Scholar 

  94. S. P. Kurdyumov, E. S. Kurkina, G. G. Malinetskii, and A. A. Samarskii, “Dissipative structures in an inhomogeneous nonlinear burning medium,” Dokl. AN SSSR,251, No. 3, 587–591 (1980).

    Google Scholar 

  95. S. P. Kurdyumov, E. S. Kurkina, G. G. Malinetskii, and A. A. Samarskii, “Nonstationary dissipative structrues in nonlinear, two-component media with volumetric sources,” Dokl. AN SSSR,258, No. 5, 1084–1088 (1981).

    Google Scholar 

  96. S. P. Kurdyumov, E. S. Kurkina, A. B. Potapov, and A. A. Samarskii, “Architecture of multidimensional heat structures,” Dokl. AN SSSR,274, No. 5, 1071–1075 (1984).

    Google Scholar 

  97. S. P. Kurdyumov and G. G. Malinetskii, Synergetics — the Theory of Self-Organization. Idea, Methods [in Russian], Prospects, Znanie, Moscow (1984).

    Google Scholar 

  98. S. P. Kurdyumov, G. G. Malinetskii, Yu. A. Poveshchenko, Yu. P. Popov, and A. A. Samarskii, “Interaction of dissipative heat structures in nonlinear media,” Dokl. AN SSSR,251, No. 4, 836–839 (1980).

    Google Scholar 

  99. L. D. Landau and E. M. Lifshits, Mechanics of Continuous Media [in Russian], GITTL, Moscow (1954).

    Google Scholar 

  100. L. D. Landau and E. M. Lifshits, Electrodynamics of Continuous Media [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  101. L. S. Leibenzon, The Motion of Natural Liquids and Gases in a Porous Medium [in Russian], GITTL, Moscow-Leningrad (1947).

    Google Scholar 

  102. L. K. Martinson and K. B. Pavlov, “On the question of spatial localization of thermal perturbations in the theory of nonlinear heat conduction,” Zh. Vychisl. Mat. Mat. Fiz.,12, No. 4, 1048–1054 (1972).

    Google Scholar 

  103. A. P. Mikhailov and V. V. Stepanova, “Localization and structures in self-similar compression of an adiabatic gas in a regime with peaking,” Preprint IPMat. AN SSSR, No. 118, Moscow (1982).

  104. A. P. Mikhailov and V. V. Stepanova, “Localization of gas-dynamical processes and structures in adiabatic compression of matter in a regime with peaking,” Prikl. Mat. Mekh.,48, No. 6, 921–928 (1984).

    Google Scholar 

  105. A. P. Mikhailov and V. V. Stepanova, “On a self-similar problem of gas dynamics,” Preprint IPMat. AN SSSR, No. 168, Moscow (1985).

  106. I. V. Nemchinov, “Dispersion of a plane layer of gas during gradual evolution of energy,” Zh. Prikl. Mekh. Tekh. Fiz., No. 1, 17–27 (1961).

    Google Scholar 

  107. I. V. Nemchinov, “On the motion of a plane layer of heated gas and its asymptotics,” in: Mechanics of a Continuous Medium and Related Problems of Analysis [in Russian], Nauka, Moscow (1972), pp. 337–369.

    Google Scholar 

  108. L. V. Ovsyannikov, “A new solution of the equations of hydrodynamics,” Dokl. AN SSSR,111, No. 4, 25–28 (1956).

    Google Scholar 

  109. L. V. Ovsyannikov, Group Analysis of Differential Equations [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  110. I. G. Petrovskii, Lectures on the Theory of Ordinary Differential Equations [in Russian], Nauka, Moscow (1964).

    Google Scholar 

  111. Yu. P. Popov and A. A. Samarskii, Difference Schemes of Gas Dynamics [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  112. Problems of Laser Thermonuclear Synthesis [in Russian], Atomizdat, Moscow (1976).

  113. A. M. Prokhorov, S. I. Anisimov, and P. P. Pashinin, “Laser thermonuclear synthesis,” Usp. Fiz. Nauk,119, No. 3, 401–425 (1976).

    Google Scholar 

  114. B. L. Rozhdestvenskii and N. N. Yanenko, Systems of Quasilinear Equations and Their Applications to Gas Dynamics [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  115. A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov, “Localization of processes of diffusion in media with constant properties,” Dokl. AN SSSR,247, No. 2, 349–353 (1979).

    Google Scholar 

  116. A. A. Samarskii, V. A. Dorodnitsyn, S. P. Kurdyumov, an Yu. P. Popov, “Formation of T-layers in the process of braking a plasma by a magnetic field,” Dokl. AN SSSR,216, No. 6, 1254–1257 (1974).

    Google Scholar 

  117. A. A. Samarskii, G. G. Elenin, N. V. Zmitrenko, S. P. Kurdyumov, and A. P. Mikhailov, “Burning of a nonlinear medium in the form of complex structures,” Dokl. AN SSSR,237, No. 6, 1330–1333 (1977).

    Google Scholar 

  118. A. A. Samarskii, N. V. Zmitrenko, S. P. Kurdyumov, and A. P. Mikhailov, “The effect of metastable localization of heat in a medium with nonlinear heat conduction,” Dokl. AN SSSR,223, No. 6, 1344–1347 (1975).

    Google Scholar 

  119. A. M. Samarskii, N. V. Zmitrenko, S. P. Kurdyumov, and A. P. Mikhailov, “Heat structure and the fundamental length in a medium with nonlinear heat conduction and a volumetric heat source,” Dokl. AN SSSR,227, No. 2, 321–324 (1976).

    Google Scholar 

  120. A. A. Samarskii an S. P. Kurdyumov, “Nonlinear processes in a dense plasma and their role in the problem of laser UTS,” T. Kafedry Volnovoi i Gazovoi Dinamiki Mekh.-Mat. F-ta, Moscow State Univ., No. 3, 18–28 (1979).

    Google Scholar 

  121. A. A. Samarskii, S. P. Kurdyumov, Yu. N. Kulikov, L. V. Leskov, Yu. P. Popov, V. A. Savichev, and S. S. Filippov, “A magnetohydrodynamic model of nonstationary acceleration of a plasma,” Dokl. AN SSSR,206, No. 2, 307–310 (1979).

    Google Scholar 

  122. A. A. Samarskii and I. M. Sobol', “Examples of numerical calculation of temperature waves,” Zh. Vychisl. Mat. Mat. Fiz.,3, No. 4, 703–719 (1963).

    Google Scholar 

  123. Yu. V. Sanochkin, “On a dissipative instability in magnetohydrodynamics,” Magn. Gidrodin., No. 3, 61–66 (1965).

    Google Scholar 

  124. L. I. Sedov, “On some non-steady-state motions of a compressible fluid,” Prikl. Mat. Mekh.,9, No. 4, 293–311 (1945).

    Google Scholar 

  125. L. I. Sedov, “On integration of the equations of the one-dimensional motion of a gas,” Dokl. AN SSSR,90, No. 5, 735 (1953).

    Google Scholar 

  126. L. I. Sedov, Similarity and Dimension Methods in Mechanics [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  127. A. F. Sidorov, V. P. Shapeev, and N. N. Yanenko, The Method of Differential Connections and Its Applications in Gas Dynamics [in Russian], Nauka, Novosibirsk (1984).

    Google Scholar 

  128. K. P. Stanyukovich, Non-Steady-State Motions of a Continuous Medium [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  129. The Theory of Heating and Compression of Low-Entropy Targets, Tr. Fiz. Inst. AN SSSR, Vol. 134, Nauka, Moscow (1982).

  130. A. N. Tikhonov, A. A. Samarskii, L. A. Zaklyaz'minskii, P. P. Volosevich, L. M. Degtyarev, S. P. Kurdyumov, Yu. P. Popov, V. S. Sokolov, and A. P. Favorskii, “The nonlinear effect of formation of a self-sustaining, high-temperature, electrically conducting layer of gas in nonstationary processes of magnetohydrodynamics,” Dokl. AN SSSR,173, No. 4, 808–811 (1967).

    Google Scholar 

  131. M. Frommer, “Integral curves of a first-order ordinary differential equation in a neighborhood of a singular point having rational character,” Usp. Mat. Nauk, No. 9, 212–254 (1941).

    Google Scholar 

  132. G. Haken, Synergetics [Russian translation], Mir, Moscow (1980).

    Google Scholar 

  133. J. S. Clark, H. N. Fisher, and R. J. Mason, “Laser-driven implosion of spherical DT targets to thermonuclear burn conditions,” Phys. Rev. Lett.,30, No. 2 (1973).

  134. G. Güderley, “Starke kugelige zylindrische Verdichtungsstosse in der Nähe des Kugelmittelpunktes bzw. der Zylinderachse,” Luftfahrtforschung,19, No. 9, 302–313 (1942).

    Google Scholar 

  135. J. B. Keller, “Spherical, cylindrical and one-dimensional gas flows,” Q. Appl. Math.,14, 171–184 (1955).

    Google Scholar 

  136. R. E. Kidder, “Theory of homogeneous isentropic compression and its application to laser fusion,” Nucl. Fusion,14, No. 1, 53–68 (1974).

    Google Scholar 

  137. J. Nuckolls, L. Wood, A. Thiessen, and G. Zimmerman, “Laser compression of matter to superhigh densities: thermonuclear applications,” Nature,239, No. 2, 5638–5642 (1972).

    Google Scholar 

  138. A. A. Samarskii, “Numerical methods in plasma physics,” in: III International Symposium “Computing Methods in Applied Sciences and Engineering,” Springer Verlag, Berlin-N.Y., II (1979), pp. 235–247.

    Google Scholar 

  139. A. A. Samarskii, “Numerical simulation in plasma physics,” in: International Symposium “Computing Methods in Applied Sciences and Engineering,” North-Holland, INRIA (1980), pp. 285–303.

  140. A. A. Samarskii, “Numerical simulation and nonlinear processes in dissipative media,” in: Self-Organization, Autowaves, and Structures Far from Equilibrium, V. I. Krinsky (ed.), Springer Verlag, Berlin (1984), pp. 119–129.

    Google Scholar 

  141. G. I. Taylor, “The air wave surrounding an expanding sphere,” Proc. R. Soc., A186, No. 100 (1946).

Download references

Authors

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennye Problemy Matematiki, Noveishie Dostizheniya, Vol. 28, pp. 3–94, 1986.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zmitrenko, N.V., Kurdyumov, S.P. & Mikhailov, A.P. Theory of regimes with peaking in compressible media. J Math Sci 41, 1163–1222 (1988). https://doi.org/10.1007/BF01098784

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01098784

Keywords

Navigation