Skip to main content
Log in

Vibrations of a transversely nonuniform basilar membrane in the mammalian cochlea

  • Published:
Journal of Soviet Mathematics Aims and scope Submit manuscript

Abstract

It is shown that high-Q amplitude-coordinate response curves (sharp tuning) can be obtained in a linear hydromechanical model of the cochlea if the nonuniform transverse stiffness and mass distribution in the basilar membrane partition is taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. G. Békésy, Experiments in Hearing, McGraw-Hill, New York (1960), p. 745.

    Google Scholar 

  2. V. M. Babich and S. M. Novoselova, “Vibration of the basilar membrane in the inner ear of mammals,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Akad. Nauk SSSR,89, 54–62 (1979).

    Google Scholar 

  3. C. R. Steele and L. A. Taber, “Comparison of ‘WKB’ calculations and experimental results for a three-dimensional cochlear model,” J. Acoust. Soc. Am.,65, 1007–1018 (1979).

    Google Scholar 

  4. M. A. Viergever, Mechanics of the Inner Ear, Delft Univ. Press, Delft (1980), p. 165.

    Google Scholar 

  5. S. M. Novoselova, “Tricameral model of the cochlea,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Akad. Nauk SSSR,148, 133–143 (1985).

    Google Scholar 

  6. S. M. Khanna and D. G. B. Leonard, “Basilar membrane turning in the cat cochlea,” Science,215, 305–306 (1982).

    Google Scholar 

  7. P. M. Sellick, R. Patuzzi, and B. M. Johnstone, “Measurement of basilar membrane motion in the guniea pig using the Mössbauer technique,” J. Acoust. Soc. Am.,72, 131–141 (1982).

    Google Scholar 

  8. E. Boer, “No sharpening? A challenge for cochlear mechanics,” J. Acoust. Soc. Am.,73, No. 2, 567–573 (1983).

    Google Scholar 

  9. M. A. Viergever and R. J. Diependaal, “Simultaneous amplitude and phase match of cochlear model calculations and basilar membrane vibration data,” in: Mechancis of Hearing: Proc. of IUTAM/ICA Symp., Delft Univ. Press, Delft (1983), pp. 53–63.

    Google Scholar 

  10. D. O. Kim, S. T. Neely, C. E. Molnar, and J. W. Matthews, “An active cochlear model with negative damping in the partition: comparison with Rhode's ante- and post-mortem observations,” in: Psychophysical, Psychological and Behavioural Studies in Hearing, Delft Univ. Press, Delft (1980), pp. 7–14.

    Google Scholar 

  11. S. T. Neely, “Mathematical modeling of cochlear mechanics,” J. Acoust. Soc. Am.,78, No. 1, 345–352 (1985).

    Google Scholar 

  12. D. J. Lim, “Cochlear anatomy related to cochlear micromechanics: a review,” J. Acoust. Soc. AM.,67, No. 5, 1686–1695 (1980).

    Google Scholar 

Download references

Authors

Additional information

Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR, Vol. 156, pp. 158–167, 1986.

The author gratefully acknowledge Prof. V. M. Babich for his steadfast and generous interest in the work and for valuable discussions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novoselova, S.M. Vibrations of a transversely nonuniform basilar membrane in the mammalian cochlea. J Math Sci 50, 1780–1785 (1990). https://doi.org/10.1007/BF01097110

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01097110

Keywords

Navigation