Skip to main content
Log in

A finite algorithm for solving general quadratic problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Here we propose a global optimization method for general, i.e. indefinite quadratic problems, which consist of maximizing a non-concave quadratic function over a polyhedron inn-dimensional Euclidean space. This algorithm is shown to be finite and exact in non-degenerate situations. The key procedure uses copositivity arguments to ensure escaping from inefficient local solutions. A similar approach is used to generate an improving feasible point, if the starting point is not the global solution, irrespective of whether or not this is a local solution. Also, definiteness properties of the quadratic objective function are irrelevant for this procedure. To increase efficiency of these methods, we employ pseudoconvexity arguments. Pseudoconvexity is related to copositivity in a way which might be helpful to check this property efficiently even beyond the scope of the cases considered here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bazaraa, M. S. and Shetty, C. M. (1979),Nonlinear Programming—Theory and Algorithms, Wiley, New York.

    Google Scholar 

  2. Bomze, I. M. (1992), Copositivity conditions for global optimality in indefinite quadratic programming problems,Czechoslovak J. for OR 1, 7–19.

    Google Scholar 

  3. Bomze, I. M. and Danninger, G. (1993), A global optimization algorithm for concave quadratic problems. To appear in:SIAM J. Optimization 3.

  4. Borgwardt, K. H. (1987),The Simplex Method—a Probabilistic Analysis, Springer, Berlin.

    Google Scholar 

  5. Cottle, R. W., Habetler, G. J., and Lemke, C. E. (1970), Quadratic forms semi-definite over convex cones, in: H. W. Kuhn (ed.),Proc. Princeton Sympos. Math. Programming, 551–565. Princeton University Press.

  6. Danninger, G. (1990), A recursive algorithm for determining (strict) copositivity of a symmetric matrix in: U. Riederet al. (eds.),Methods of Operations Research 62, 45–52. Hain, Meisenheim.

    Google Scholar 

  7. Hadeler, K. P. (1983), On copositive matrices,Linear Algebra Appl. 49, 79–89.

    Google Scholar 

  8. Hiriart-Urruty, J.-B. (1989), From Convex Optimization to Nonconvex Optimization, Part I: Necessary and sufficient conditions for Global Optimality, in: F. H. Clarkeet al. (eds.),Nonsmooth Optimization and Related Topics, 219–239, Plenum Press, New York.

    Google Scholar 

  9. Hiriart-Urruty, J.-B. and Lemarechal, C. (1990), Testing necessary and sufficient conditions for global optimality in the problem of maximizing a convex quadratic function over a convex polyhedron. Preliminary report,Seminar of Numerical Analysis, University Paul Sabatier, Toulouse.

    Google Scholar 

  10. Horst, R. and Tuy, H. (1991),Global Optimization — Deterministic Approaches, Springer, Berlin.

    Google Scholar 

  11. Martin, D. H. (1981), Finite criteria for conditional definiteness of quadratic forms,Linear Algebra Appl. 39, 9–21.

    Google Scholar 

  12. Martos, B. (1975),Nonlinear Programming — Theory and Methods, North-Holland, Amsterdam.

    Google Scholar 

  13. Murty, K. G. and Kabadi, S. N. (1987), Some NP-complete problems in quadratic and linear programming,Math. Programming 39, 117–129.

    Google Scholar 

  14. Pardalos, P. M. (1990), Polynomial time algorithms for some classes of constrained nonconvex quadratic problems,Optimization 21, 843–853.

    Google Scholar 

  15. Pardalos, P. M. and Rosen, J. B. (1987),Constrained Global Optimization: Algorithms and Applications, Springer, Berlin.

    Google Scholar 

  16. Pardalos, P. M. and Schnitger, G. (1988), Checking local optimality in constrained quadratic programming is NP-hard,OR Letters 7, 33–35.

    Google Scholar 

  17. Pardalos, P. M. and Vavasis, S. A. (1991), Quadratic programming with one negative eigenvalue is NP-hard,J. Global Optimization 1, 15–22.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bomze, I.M., Danninger, G. A finite algorithm for solving general quadratic problems. J Glob Optim 4, 1–16 (1994). https://doi.org/10.1007/BF01096531

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01096531

Key words

Navigation