Skip to main content
Log in

Distribution and regulation of natriuretic factor-R1C receptor subtypes in mammalian cell lines

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The differential distribution of natriuretic peptide receptor subtypes and their distinct properties were assessed in mammalian cellular models which were screened for their ability to produce cGMP upon stimulation by different natriuretic peptides. The ANF-R1A receptor subtype was distinguished by its selective activation by atrial natriuretic factor (ANF) while the ANF-R1C was characterized by preferential stimulation by C-type natriuretic peptide (CNP). AT-t20 pituitary cells, bovine adrenal chromaffin cells, and NIH-3T3 fibroblasts mainly express the ANF-R1C receptor subtype. Other cell lines such as PC12, RASM and GH3 express significant but varying amounts of both ANF-R1A and ANF-R1C subtypes. A10 and NIH cells which express high density of ANF-R2 receptor subtype, also demonstrate a higher sensitivity to CNP over ANF suggesting that they express significant amounts of ANF-R1C. Studies of the regulation by ATP of guanylyl cyclase activity indicate that both ANF-R1A and ANF-R1C subtypes are modulated in the same manner. In the presence of Mn2+, ATP inhibits the CNP-stimulated guanylyl cyclase activity while in the presence of Mg2+ adenine nucleotides potentiate the stimulation by CNP. In addition, we show that like the ANF-R1A, the ANF-R1C guanylyl cyclase activity can be regulated by phosphorylation since preincubation with TPA or FKL attenuates the subsequent stimulation by CNP in cultured cells. The results presented demonstrate that specific cell types express distinct natriuretic peptide receptor subtypes and also that the newly characterized ANF-R1C subtype is regulated by ATP and serine/threonine kinases in the same way as the ANF-R1A subtype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANF:

atrial natriuretic factor

BNP:

brain natriuretic peptide

CNP:

C-type natriuretic peptide

ATP:

adenosine-5′-triphosphate

IBMX:

3-isobutyl-1-methylxanthine

TPA:

12-O-tetradecanoyl-phorbol-13-acetate

FKL:

forskolin

PKC:

calcium-phospholipid-dependent protein kinase

PKA:

cAMP-dependent protein kinase

PKG:

cGMP-dependent protein kinase

C-ANF:

[Cys116]-ANF-(102-116)-NH2

CC:

chromaffin cells

References

  1. Féthière J, De Léan A: Pharmacological evidence for the heterogeneity of atrial natriuretic factor-R1 receptor subtype. Mol Pharmacol 40:915–922, 1991

    PubMed  Google Scholar 

  2. Koller KJ, Lowe DG, Bennett GL, Minamino N, Kangawa K, Matsuo H, Goeddel DV: Selective activation of the B natriuretic peptide receptor by C-type natriuretic peptide (CNP). Science 252:120–123 1991

    PubMed  Google Scholar 

  3. Féthière J, Graihle R, De Léan A: Identification of the ANF-R1C (B-Clone) receptor subtype in culture rat aortic smooth muscle cells. FEBS Letters 305:77–80, 1992

    PubMed  Google Scholar 

  4. Féthière J, Meloche S, Nguyen T-T, Ong H, De Léan A: Distinct properties of atrial natriuretic factor receptor subpopulations in epithelial and fibroblast cell lines. Mol Pharmacol 35:584–592, 1989

    PubMed  Google Scholar 

  5. Anand-Srivastava MB, Sairam MR, Cantin M: Ring-deleted analogs of atrial natriuretic factor inhibit adenylate cyclase/cAMP system: Possible coupling of clearance atrial natriuretic factor receptors to adenylate cyclase/cAMP signal transduction system. J Biol Chem 265 (15):8566–8572, 1990

    PubMed  Google Scholar 

  6. Maack T, Suzuki M, Almeida FA, Nussenzveig D, Scarborough RM, McEnroe GA, Lewicki JA: Physiological role of silent receptors for atrial natriuretic factor. Science 238:675–678, 1987

    PubMed  Google Scholar 

  7. Singh S, Lowe DG, Thorpe DS, Rodriguez H, Kuang J-W, Dangott LJ, Chinkers M, Goeddel DV, Garbers DL: Membrane guanylyl cyclase is a cell-surface receptor with homology to protein kinases. Nature 334:708–712, 1988

    PubMed  Google Scholar 

  8. Chang M-S, Lowe DG, Lewis M, Hellmiss R, Chen E, Goeddel DV: Differential activation by atrial natriuretic and brain natriuretic peptides of two different receptor guanylyl cyclases. Nature 341:68–72, 1989

    PubMed  Google Scholar 

  9. Fuller F, Porter JG, Arfsten AE, Miller J, Schilling JW, Scarborough RM, Lewicki JA, Schenk DB: Atrial natriuretic peptide clearance receptor: Complete sequence and functional expression on cDNA clones. J Biol Chem 263 (19):9395–9401, 1988

    PubMed  Google Scholar 

  10. Wilcox JN, Augustine A, Goeddel DV, Lowe DG: Differential regional expression of three natriuretic peptide receptor genes within primate tissues. Mol Cell Biol 11 (7):3454–3462, 1991

    PubMed  Google Scholar 

  11. Kurose H, Inagami T, Ui M: Participation of adenosine 5′-triphosphate in the activation of membrane-bound guanylyl-cyclase by the atrial natriuretic factor. FEBS Letters 219 (2):375–379, 1987

    PubMed  Google Scholar 

  12. Larose L, Rondeau J-J, Ong H, De Léan A: Phosphorylation of atrial natriuretic factor R1 receptor by serine/threonine kinases: Evidence for receptor regulation. Mol Cell Biochem 115:203–211, 1992

    PubMed  Google Scholar 

  13. Nguyen T-T, Ong H, De Léan A: Secretion and biosynthesis of atrial natriuretic factor by cultured adrenal chromaffin cells. FEBS Letters 231 (2):393–396, 1988

    PubMed  Google Scholar 

  14. Sudoh T, Maekawa K, Kojima M, Minamino N, Kaplan J, Matsuo H: Cloning and sequence analysis of cDNA encoding a precursor for human brain antriuretic peptide. Biochem Biophys Res Comm 159 (3):1427–1434, 1989

    PubMed  Google Scholar 

  15. Heisler S, Morrier E: Bovine adrenal medullary cells contain functional atrial natriuretic peptide receptors. Biochem Biophys Res Comm 150 (2):781–787, 1988

    PubMed  Google Scholar 

  16. Shigematsu K, Niwa M, Shimomura C, Kamio T, Ozaki M Tsuchiyama H: Different subtypes of atrial natriuretic peptide receptors in human fetal, neonatal and adult adrenal glands. Biomed Res 11 (2):109–115, 1990

    Google Scholar 

  17. Koch B, Boudjada T, Lutz-Bucher B: Characterization of high affinity receptor sites for atrial natriuretic factor in anterior pituitary gland: Evidence for the existence of two receptor forms. Biochem Biophys Res Comm 152 (2):904–909, 1988

    PubMed  Google Scholar 

  18. Larose L, McNicoll N, Ong H, De Léan A: Allosteric modulation by ATP of the bovine adrenal natriuretic factor R1 receptor functions. Biochemistry 30(37):8990–8995, 1991

    PubMed  Google Scholar 

  19. Marala RB, Sitaramayya A, Sharma RK: Dual regulation of atrial natriuretic factor-dependent guanylyl cyclase activity by ATP. FEBS Letters 281 (1):73–76, 1991

    PubMed  Google Scholar 

  20. Jaiswal RK, Jaiswal N, Sharma RK: Negative regulation of atrial natriuretic factor receptor coupled membrane guanylyl cyclase by phorbol ester: Potential protein kinase C regulation of cyclic GMP signal in isolated adrenocortical carcinoma cells of rat. FEBS Letters 227 (1):47–50, 1988

    PubMed  Google Scholar 

  21. Lowe DG, Chang M-S, Hellmiss R, Ellson C, Singh S, Garbers DL, Goeddel DV: Human atrial natriuretic peptide receptor defines a new paradigm for second messenger signal transduction. EMBO J 8 (5):1377–1384, 1989

    PubMed  Google Scholar 

  22. Chinkers M, Garbers DL, Chang M-S, Lowe DG, Hemin C, Goeddel DV, Schultz S: A membrane form of guanylyl cyclase is an atrial natriuretic peptide receptor. Nature 338:78–83, 1989

    PubMed  Google Scholar 

  23. Jaiswal RK: Endothelin inhibits the atrial natriuretic factor stimulated cGMP production by activating the protein kinase C in rat aortic smooth muscle cells. Biochem Biophys Res Comm 182 (1): 395–402, 1992

    PubMed  Google Scholar 

  24. Neuser D, Stasch J-P, Morich FJ: Modulation of atrial natriuretic peptide-induced cGMP accumulation by [Arg8]vasopressin in the cultured renal epithelial cell line, LLC-PK1. Eur J Pharmacol 146: 341–344, 1988

    PubMed  Google Scholar 

  25. Nambi P, Whitman M, Gessner G, Aiyar N, Crooke ST: Vasopressin-mediated inhibition of atrial natriuretic factor-stimulated cGMP accumulation in an established smooth muscle cell line. Proc Natl Acad Sci USA 83:8492–8495, 1986

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Féthière, J., Graihle, R., Larose, L. et al. Distribution and regulation of natriuretic factor-R1C receptor subtypes in mammalian cell lines. Mol Cell Biochem 124, 11–16 (1993). https://doi.org/10.1007/BF01096376

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01096376

Key words

Navigation