Skip to main content
Log in

Conditionally positive-definite functions in quantum probability theory

  • Published:
Journal of Soviet Mathematics Aims and scope Submit manuscript

Abstract

The author introduces the concepts of positive-definite and conditionally positive definite functions with values in the algebra of bounded maps of a C*-algebra. An analog of Schoenberg's theorem is proved, a GNS-representation is obtained for conditionally positive-definite functions in terms of suitable cocycles, and this representation leads to a noncommutative generalization of the Lévy— Khinchin formula. Applications to the problem of continuous measurement in quantum mechanics are considered. A complete mathematical description is presented of continuous measurement processes, based on the analogy with the classical parts of probability theory—the theory of infinitely divisible distributions and functional limit theorems for processes with independent increments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. P. Billingsley, Convergence of Probability Measures, Wiley, New York (1968) [Russian translation], Nauka, Moscow (1977)].

    Google Scholar 

  2. I. M. Gel'fand and N. Ya. Vilenkin, Generalized Functions [in Russian], Vol. 4, Nauka, Moscow (1961).

    Google Scholar 

  3. B. V. Gnedenko and A. N. Kolmogorov, Limit Theorems for Sums of Independent Random Variables [in Russian], Gostekhizdat, Moscow-Leningrad (1949).

    Google Scholar 

  4. M. B. Menskii, The Path Group: Measurements, Fields, Particles [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  5. J. von Neumann, Mathematische Grundlagen der Quantenmechanik, Springer, Berlin (1932).

    Google Scholar 

  6. H. Heyer, Probability Measures on Locally Compact Groups, Springer, Berlin (1977).

    Google Scholar 

  7. A. S. Kholevo, Probability and Statistical Aspects of Quantum Theory [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  8. A. S. Kholevo, “On measurements of parameters of a quantum stochastic process,” Teor. Mat. Fiz.,57, No. 3, 424–437 (1983).

    Google Scholar 

  9. A. S. Kholevo, “Infinitely divisible measurements in quantum probability theory,” Teor. Veroyatn. Primen.,31, No. 3, 560–564 (1986).

    Google Scholar 

  10. A. S. Kholevo, “Representations of Lévy—Khinchin type in quantum probability theory,” Teor. Veroyatn. Primen.,32, No. 1, 142–146 (1987).

    Google Scholar 

  11. A. Barchielli, L. Lanz, and G. M. Prosperi, “A model of macroscopic description and continual observations in quantum mechanics,” Nuovo Cimento,72B, 79–121 (1982).

    Google Scholar 

  12. A. Barchielli, L. Lanz, and G. M. Prosperi, “Statistics of continuous trajectories in quantum mechanics: operation-valued stochastic processes,” Found. Phys.,13, 779–812 (1983).

    Google Scholar 

  13. A. Barchielli and G. Lupieri, “Dilations of operation-valued stochastic processes,” Lect. Notes Math.,1136, 57–66 (1985).

    Google Scholar 

  14. A. Barchielli, “Continuous observations in quantum mechanics: an application to gravitational-wave detectors,” Phys. Rev. D,32, 347–367 (1985).

    Google Scholar 

  15. E. Christensen and D. E. Evans, “Cohomology of operator algebras and quantum dynamical semigroups,” J. London Math. Soc.,20, No. 2, 358–368 (1979).

    Google Scholar 

  16. E. B. Davies, Quantum Theory of Open Systems, Academic Press, London (1976).

    Google Scholar 

  17. J. Dixmier, Les Algèbres d'Opérateurs Dans L'Espace Hilbertien, Gauthier-Villars, Paris (1969).

    Google Scholar 

  18. D. E. Evans and J. T. Lewis, Dilations of Irreversible Evolutions in Algebraic Quantum Theory (Commun. Dublin Inst. Advanced Studies, Ser. A,24) (1977).

  19. A. Guichardet, Symmetric Hilbert Spaces and Related Topics Springer, Berlin (1972).

    Google Scholar 

  20. A. S. Holevo, “Conditionally positive definite functions in quantum probability,” in: Proc. Int. Congress Math., Berkeley, California, U.S.A., 1986 (1987), pp. 1011–1020.

  21. S. Johansen, “An application of extreme point method to the representation of infinitely divisible distributions,” Z. Wahrscheinlichkeitst. Geb.,5, 304–316 (1966).

    Google Scholar 

  22. G. Lindblad, “On the generators of quantum dynamical semigroups,” Commun. Math. Phys.,48, No. 2, 119–130 (1976).

    Google Scholar 

  23. B. Misra and E. C. G. Sudarshan, “The Zeno's paradox in quantum theory,” J. Math. Phys.,18, No. 4, 756–763 (1977).

    Google Scholar 

  24. M. Ozawa, “Quantum measuring processes of continuous observables,” J. Math. Phys.,25, No. 1, 79–87 (1984).

    Google Scholar 

  25. K. R. Parthasarathy and K. Schmidt, Positive Definite Kernels, Continuous Tensor Products, and Central Limit Theorems, Springer, Berlin (1972).

    Google Scholar 

  26. K. R. Parthasarathy, “One parameter semigropus of completely positive maps on groups arising from quantum stochastic differential equations,” Bull. Unione Matem. Italiana,5A, 57–66 (1986).

    Google Scholar 

  27. Quantum Probability and Applications II, Springer, Berlin (1985).

  28. D. Russo and H. A. Dye, “A note on unitary operators in C*-algebras,” Duke Math. J.,33, 413–416 (1966).

    Google Scholar 

  29. I. J. Schoenberg, “Metric spaces and positive definite functions,” Trans. Am. Math. Soc.,4, 522–530 (1938).

    Google Scholar 

  30. M. Schürmann, “Positive and conditionally positive linear functionals,” in: Quantum Probability and Applications II, Springer, Berlin (1985), pp. 474–492. pp. 474–492.

    Google Scholar 

  31. M. Takesaki, Theory of Operator Algebras, Springer, New York (1979).

    Google Scholar 

Download references

Authors

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennye Problemy Matematiki, Noveishie Dostizheniya, Vol. 36, pp. 103–147, 1990.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kholevo, A.S. Conditionally positive-definite functions in quantum probability theory. J Math Sci 56, 2670–2697 (1991). https://doi.org/10.1007/BF01095976

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01095976

Keywords

Navigation