Skip to main content
Log in

Mathematical modeling of heat-moisture transfer in soil and the problem of interpretation of data of remote sensing of the Earth's surface

  • Published:
Journal of Soviet Mathematics Aims and scope Submit manuscript

Abstract

By the methods of the thermodynamics of nonequilibrium processes and continuum mechanics we obtain a system of equations for quantitative description of the processes of heat-moisture transfer in soils; we state boundary conditions on the earth-atmosphere interface. We formulate the direct and inverse problems of heat-moisture transfer for the directed toward the application of the data of terrestrial and remote measurements. We conduct numerical studies for model problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. E. N. Bortnik and B. V. Gera, “Determination of the effective thermophysical characteristics of the earth's surface,” in:Proc. 12th Conf. Young Scholars Inst. Appl. Probl. Mech. Math, [in Russian], Akad. Nauk Ukr. SSR, L'vov (1988), pp. 12–16.

    Google Scholar 

  2. Ya. I. Burak, B. P. Galapats, and E. Ya. Chaplya, “Deformation of electrically conducting bodies taking account of heterodiffusion of charged admixture particles,”Fiz.-Khim. Mekh. Mater., No. 5, 8–14 (1980).

    Google Scholar 

  3. V. L. Bysov, I. A. Koltunov, A. M. Pletnev, and T. D. Lysenko, “Determination of the thermophysical parameters of formations of the earth's surface from the data of remote radiometric sensing,” Preprint: Akad. Nauk Ukr. SSR, Fiz.-Tekh. Inst. Nizk. Temp., No. 13, Khar'kov (1985).

  4. B. V. Gera, “The inverse problem of determining the characteristics of averaged heat sources in a half-space,”Dop. Akad. Nauk Ukr. RSR, Ser. A, No. 3, 75–79 (1988).

    Google Scholar 

  5. J. T. Khyuton, ed.Global Climate [in Russian], Gidrometeoizdat, Leningrad (1985).

    Google Scholar 

  6. E. S. Sergeev, ed.Soil Science [in Russian], Moscow University Press (1983).

  7. R. D. Jackson, “Estimation of evapotranspiration on the local and regional scales,”Tr. Inst. Inzh. Elektrotekh. Radioelektr.,73, No. 6, 137–151 (1985).

    Google Scholar 

  8. I. D'yarmati,Nonequilibrium Thermodynamics [Russian translation], Mir, Moscow (1974).

    Google Scholar 

  9. I. A. Koltunov, Ya. Noiman, and A. M. Pletnev, “The problem of determining the thermophysical pa-rameters of formations of the earth's surface from data of radiometric sensing in different formulations,” Preprint: Akad. Nauk Ukr. SSR, Fiz.-Tekh. Inst. Nizk. Temp., Khar'kov (1986)

  10. K. Ya. Kondrat'ev, “The influence of processes on a land surface on climatic change and the international project of satellite climatology of the land surface: (Survey),”Issled. Zemli iz Kosmosa, No. 6, 106–115 (1985)

    Google Scholar 

  11. L. Z. Kriksunov and G. A. Padalko,Thermovisors: A Handbook [in Russian], Tekhnika, Kiev (1987).

    Google Scholar 

  12. A. V. Lykov, “Mass-Thermal Transfer in Capillary-Porous Media,” in:Heat and Mass Transfer in Capillary-Porous Bodies [in Russian], Nauka i Tekhnika, Minsk (1965), pp. 3–27.

    Google Scholar 

  13. V. I. Lyal'ko,Heat-Mass Transfer in the Lithosphere [in Russian], Naukova Dumka, Kiev (1985).

    Google Scholar 

  14. V. I. Lyal'ko, M. M. Mitnik, L. D. Vul'fson, and Z. M. Shportyuk,Geothermic Prospecting for Useful Minerals [in Russian], Naukova Dumka, Kiev (1979).

    Google Scholar 

  15. V. I. Lyal'ko, O. N. Sibirtseva, and Z. M. Shportyuk, “Interpretation of geothermic anomalies using the solution of inverse problems,” Preprint: Akad. Nauk Ukr. SSR, Inst. Geol. Nauk, No. 27 (1981).

  16. A. Myunster,Chemical Thermodynamics [Russian translation], Mir, Moscow (1971).

    Google Scholar 

  17. Directive to Hydrometeoroloigic Stations and Posts [in Russian], Gidrometeoizdat, Leningrad (1961).

  18. S. A. Nerpin and A. R. Chudnovs'kii,Energy and Mass Transfer in a Plant-Soil-Air System [in Russian], Gidrometeoizadat, Leningrad (1975).

    Google Scholar 

  19. Ya. S. Podstrigach, “The diffusion theory of deformation of an isotropic continuous medium,”Vopr. Mekh. Real. Tverd. Tela, No. 4, 71–99 (1964).

    Google Scholar 

  20. Ya. S. Podstrigach, A. B. Karasev, B. V. Gera, P. A. Zhuk, and E. Ya. Chaplya, “Models of heatmoisture transfer in soil and problems of identification of their parameters from terrestrial measurements and remote sensing in the infrared range,” Preprint: Akad. Nauk Ukr. SSR, Inst. Prikl. Probl. Mekh. Mat., No. 19–88, L'vov (1988).

  21. Ya. S. Podstrigach and P. R. Shvets,Thermoelasticity of Thin Shells [in Russian], Naukova Dumka, Kiev (1978).

    Google Scholar 

  22. I. S. Kaurichev, ed.Practical Soil Science [in Russian], Kolos, Moscow (1980).

    Google Scholar 

  23. E. A. Reutov and A. M. Shutko, “Estimating the temperature profile of soil from the data of remote ultraviolet and infrared measurements,”Issled. Zemli iz Kosmosa, No. 4, 78–85 (1987).

    Google Scholar 

  24. R. Sleicher,The Water Regime of Plants [Russian translation], Mir, Moscow (1970).

    Google Scholar 

  25. A. I. Tikhonov and V. Ya. Arsenin,Methods of Solving Ill-posed Problems [in Russian], Nauka, Moscow (1986)

    Google Scholar 

  26. B. V. Shilin,Thermal Aerial Photography in the Study of Natural Formations [in Russian], Gidrometeoizdat, Leningrad (1980).

    Google Scholar 

  27. S. R. J. Axelsson, “Thermal modeling for the interpretation of IR-data,” in:Proc. 17 Int. Symp. Remote Sens. Envir., Vol. 2, Ann Arbor (1983), pp. 498–518.

    Google Scholar 

  28. P. J. Camillo, R. J. Curney, and T. J. Schmugge, “A soil and atmospheric boundary layer model for evapotranspiration and soil moisture studies,”Water Resources Research,19, No. 2, 371–380 (1983).

    Google Scholar 

  29. R. J. Curney and P. J. Camillo, “Modeling daily evapotranspiration using remotely sensed data,”J. Hydrology,69, 305–324 (1987).

    Google Scholar 

  30. A. El Badia and M. Courdesses, “Identification of spatially varying parameters in distributed parameter systems,” in:11th IMACS World Cong. Comput., Oslo, Vol. 4 (1986), pp. 263–267.

    Google Scholar 

  31. D. Ho, “A soil thermal model for remote sensing,” IEEE Trans. Geos. and Remote Sens.GE-25, No. 2, 221–229 (1987).

    Google Scholar 

  32. R. J. Curney and D. K. Hall, “Satellite-driver surface energy balance estimates in the Alaskan sub-Arctic,”J. Climate and Appl. Meteorology,22, 115–125 (1983).

    Google Scholar 

  33. J. C. Price, “Estimation of regional scale evapotranspiration through analysis of satellite thermal-infrared data,”IEEE Trans. Geos. and Remote Sens.,GE-20, No. 3, 286–305 (1982).

    Google Scholar 

  34. M. Raffy and F. Becker, “An inverse problem occurring in remote sensing in the thermal infrared bands and its solution,”J. Geophys. Res.,90, No. D3, 5809–5819 (1985).

    Google Scholar 

Download references

Authors

Additional information

Translated fromMatematicheskie Metody i Fiziko-Mekhanicheskie Polya, Issue 35, 1992, pp. 8–20.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pidstrigach, Y.S., Karas'ov, O.B., Gera, B.V. et al. Mathematical modeling of heat-moisture transfer in soil and the problem of interpretation of data of remote sensing of the Earth's surface. J Math Sci 67, 2818–2829 (1993). https://doi.org/10.1007/BF01095853

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01095853

Keywords

Navigation