Skip to main content
Log in

Groups of transformations of Riemannian manifolds

  • Published:
Journal of Soviet Mathematics Aims and scope Submit manuscript

Abstract

This paper is a survey of the articles reviewed by the journalMatematika from January 1971 through August 1989 on groups of transformations of Riemannian manifolds and their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. B. Abakirov, “Some transformation groups in Riemannian spaces with degeneracy fields,” in:Studies in Topology and Geometry [in Russian], Frunze (1985), pp. 3–6.

  2. B. Abakirov and D. Moldobaev, “Some problems about groups of conformai mappings of Riemannian spaces,”Sb. Tr. Aspirantov i Soiskatelei (Collection of Papers by Graduate Students and Research Assistants), Kirg. Univ. Ser. Mat. Nauk,10, 3–7 (1973).

    Google Scholar 

  3. G. B. Abakirova, “On intransitive groups of conformai mappings in four-dimensional spaces with degeneracy fields,” in:Studies in Topology and Geometry [in Russian], Frunze (1985), pp. 6–14.

  4. D. V. Alekseevskii, “Groups of conformai mappings of Riemannian spaces,”Mat. Sb.,89, No. 2, 280–296 (1972).

    Google Scholar 

  5. D. V. Alekseevskii, “S n andE n are the only Riemannian spaces admitting an essential conformai mapping,”Usp. Mat. Nauk,28, No. 5, 225–226 (1973).

    Google Scholar 

  6. D. V. Alekseevskii, “Holonomy groups and recurrent tensor fields in Lorentz spaces,”Prob. Teorii Gravitatsii i Elementarn. Chastits (Problems of Gravitational and Elementary Particle Theory), No. 5, Atomizdat, Moscow (1974), pp. 5–17.

    Google Scholar 

  7. D. V. Alekseevskii, “Homogeneous Riemannian spaces of negative curvature,”Mat. Sb.,96, No. 1, 93–117 (1975).

    Google Scholar 

  8. D. V. Alekseevskii and B. N. Kimel'fel'd, “The classification of homogeneous conformally flat Riemannian manifolds,Mat. Zametki,24, No. 1, 103–110 (1978).

    Google Scholar 

  9. G. B. Alybakova, “On intransitive groups of conformai mappings of four-dimensional Riemannian spaces with degenerate hypersurfaces,” in:Studies in Topology and Generalized Spaces [in Russian], Frunze (1988), pp. 63–70.

  10. A. V. Aminova, “On gravitational fields admitting groups of projective motions,”Dokl. Akad. Nauk SSSR,197, No. 4, 807–809 (1971).

    Google Scholar 

  11. A. V. Aminova, “Projective groups in gravitational fields. I,”Gravitation and the Theory of Relativity [in Russian], Kazan University, No. 8, 3–13 (1971).

  12. A. V. Aminova, “Projective groups in gravitational fields. II,”Gravitation and the Theory of Relativity [in Russian], Kazan University, No. 8, 14–20 (1971).

  13. A. V. Aminova, “On infinitesimal mappings that preserve the trajectories of test bodies,” [in Russian], Preprint ITF-71-85 R.-Kiev (1971).

  14. A. V. Arninova, “Projective-group properties of some Riemannian spaces,”Tr. Geometr. Seminara, VINITI,6, 295–316 (1974).

    Google Scholar 

  15. A. V. Aminova, “Groups of projective and affine motions in spaces of the general theory of relativity,”Tr. Geometr. Seminara, VINITI,6, 317–346 (1974).

    Google Scholar 

  16. A. V. Arninova, “Projective groups in space-times admitting two constant vector fields,”Gravitation and the Theory of Relativity [in Russian], Kazan University, No. 10–11, 9–22 (1975–1976).

  17. A. V. Aminova, “On concircular motions in Riemannian spaces,”Gravitation and the Theory of Relativity [in Russian], Kazan University, No. 10–11, 127–138 (1975–1976).

  18. A. V. Aminova, “The determination of infinitesimal almost projective mappings,”Gravitation and the Theory of Relativity [in Russian], Kazan University, No. 13, 3–9 (1976).

  19. A. V. Aminova, “Concircular vector fields and group symmetries in universes of constant curvature,”Gravitation and the Theory of Relativity [in Russian], Kazan University, No. 14–15, 4–16 (1978).

  20. A. V. Aminova, “Examples of groups of almost projective motions,”Gravitation and the Theory of Relativity [in Russian], Kazan University, No. 14–15, 138–142 (1978).

  21. A. V. Aminova, “Groups of almost projective motions of spaces of affine connection,”Izv. Vuzov, Mat., No. 4, 71–75 (1979).

    Google Scholar 

  22. A. V. Aminova, “Groups of almost projective motions in reducible gravitational fields,”Gravitation and the Theory of Relativity [in Russian], Kazan University, No. 17, 3–11 (1980).

  23. A. V. Aminova, “On a class of projectively movable spaces. I,”Gravitation and the Theory of Relativity [in Russian], Kazan University, No. 18, 3–10 (1981).

  24. A. V. Aminova, “On skew-orthogonal frames and certain properties of parallel tensor fields on Riemannian manifolds,”Izv. Vuzov. Mat., No. 6, 63–67 (1982).

    Google Scholar 

  25. A. V. Aminova, “On a moving skew-orthogonal frame and a type of projective motion of Riemannian manifolds,”Izv. Vuzov. Mat., No. 9, 69–74 (1982).

    Google Scholar 

  26. A. V. Aminova, “On the Eisenhart equation and the first integrals of the equations of geodesies in Riemannian manifolds of Lorentz signature,”Izv. Vuzov. Mat., No. 1, 12–26 (1983).

    Google Scholar 

  27. A. V. Aminova, “On the projective-group properties of Riemannian spaces of Lorentz signature,”Izv. Vuzov. Mat., No. 6, 10–21 (1984).

    Google Scholar 

  28. A. V. Aminova, “Nonhomothetic projective motions in ordinaryh-spaces of Lorentz signature,”Izv. Vuzov. Mat., No. 4, 3–13 (1985).

    Google Scholar 

  29. A. V. Aminova, “Lie algebras of projective motions and mechanical conservation laws in two-dimensional universes of special structure,”Gravitation and the Theory of Relativity [in Russian], Kazan University, No. 22, 3–12 (1985).

  30. A. V. Aminova, “A surface of revolution as a dynamic model of a Lagrangian system with one degree of freedom. Conserved quantities,”Gravitation and the Theory of Relativity [in Russian], Kazan University, No. 22, 12–30 (1985).

  31. A. V. Aminova, “Lie algebras of projective motions in h-spaces of type (3),”Izv. Vuzov. Mat., No. 3, 68–71 (1987).

    Google Scholar 

  32. A. V. Aminova, “On the projective-group symmetries of Friedman universes and their multidimensional generalizations—ordinaryh-spaces of type {1(1...1)},”Izv. Vuzov. Mat., No. 12, 66–68 (1987).

    Google Scholar 

  33. A. V. Aminova, “On the integration of a first-order covariant differential equation and geodesic mappings of Riemannian spaces of arbitrary signature and dimension,”Izv. Vuzov. Mat., No. 1, 3–13 (1988).

    Google Scholar 

  34. A. V. Aminova, “Symmetry groups in the general theory of relativity,”Gravitation and the Theory of Relativity [in Russian], Kazan University, No. 25, 16–23 (1988).

  35. A. V. Aminova, “Lie algebras of projective motions of ordinaryh-spaces of Lorentz signature,”Izv. Vuzov. Mat., No. 1, 3–12 (1989).

    Google Scholar 

  36. A. V. Aminova, “On invariance groups of the equations of motion of test bodies of isotropic cosmological models,”Gravitation and the Theory of Relativity [in Russian], Kazan University, No. 26, 93–101 (1989).

  37. A. V. Aminova and Yu. V. Monakhov, “The unified nonsymmetric field theories of Einstein, Bonnor, and Schrödinger in a space with symmetries,”Gravitation and the Theory of Relativity [in Russian], Kazan University, No. 12, 3–16 (1977).

  38. A. V. Aminova and A. M. Mukhamedov, “Groups of almost projective motions in De Sitter space,”Gravitation and the Theory of Relativity [in Russian], Kazan University, No. 16, 3–8 (1980).

  39. A. V. Aminova and A. M. Mukhamedov, “Groups of almost projective motions ofn-dimensional (pseudo)-Euclidean spaces,”Izv. Vuzov. Mat., No. 11, 5–11 (1980).

    Google Scholar 

  40. A. V. Aminova and T. P. Toguleva, “Projective and affine motions determined by concircular vector fields,”Gravitation and the Theory of Relativity [in Russian], Kazan University, No. 10–11, 139–153 (1975–1976).

  41. V. V. Astrakhantsev, “On holonomy groups of four-dimensional pseudo-Riemannian spaces,”Mat. Zametki,9, 59–66 (1971).

    Google Scholar 

  42. V. V. Astrakhantsev, “Pseudo-Riemannian symmetric spaces with commutative holonomy group,”Mat. Sb.,90, No. 2, 288–305 (1973).

    Google Scholar 

  43. R. F. Bilyalov, “Conformai transformation groups in gravitational fields,”Dokl. Akad. Nauk SSSR,152, No. 3, 570–572 (1963).

    Google Scholar 

  44. O. I. Bogoyavlenskii and S. P. Novikov, “The qualitative theory of homogeneous cosmological models,”Tr. Seminara im. I. G. Petrovskogo, Moscow University, No. 1, 7–43 (1975).

  45. D. V. Volkov, D. P. Sorokin, and V. I. Tkach, “Gauge fields in mechanisms of spontaneous compactification of subspaces,”Teor, i mat. fiz.,56, No. 2, 171–179 (1983).

    Google Scholar 

  46. N. V. Volkov, “The local group of motions of ann-dimensional quasiorthogonal Riemannian spacetime” [in Russian],Leningrad Electrotechnical Institute (1979).

  47. E. I. Galyarskii, “Two-dimensional groups of conformai symmetry and their generalizations,”Sovr. Vopr. Prikl. Mat. i Programmir. Mat. Nauki (Modern Questions of Applied Mathematics and Programming. Mathematical Sciences), Kishinev (1979), pp. 31–36.

  48. O. S. Germanov, “On three-dimensional Riemannian spaces admitting a group of conformai transformations of order at most three” [in Russian]Gor'kii Polyt. Inst. (1986).

  49. V. P. Golubyatnikov and L. N. Pestov, “On a group of conformai mappings ofR3 in stellar dynamics and the inverse kinematical problems of seismics,” in:Priblizhen. Metody Resheniya i Vopr. Korrektnosti Obratn. Zadach. (Approximate Methods of Solution and Questions of the Well-posedness of Inverse Problems), Novosibirsk (1981), pp. 35–43.

  50. I. V. Gribkov, “On sufficient conditions for maximality of holonomy groups of Riemannian manifolds,”Vestn. MGU. Mat. Mekh., No. 3, 50–52 (1988).

    Google Scholar 

  51. N. A. Gromov, “On passage to the limit in sets of groups of motions and the Lie algebras of spaces of constant curvature,”Mat. Zametki,32, No. 3, 355–364 (1982).

    Google Scholar 

  52. R. A. Daishev,Isometric Motions of an Ideal Fluid with a Massive Scalar Field [in Russian], Kazan University Press (1983).

  53. R. A. Daishev, “Isometric motions of an ideal fluid with massive scalar field,”Gravitation and the Theory of Relativity [in Russian], Kazan Univ., No. 25, 40–57 (1988).

  54. B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko,Modern Geometry. Methods and Applications [in Russian], 2nd Ed., revised, Nauka, Moscow (1986).

    Google Scholar 

  55. A. I. Egorov and L. I. Egorova, “On some spaces that admit groups of motions of maximal order,”Liet. mat. rinkinys (Lithuanian Mathematical Collection),12, No. 2, 39–42 (1972).

    Google Scholar 

  56. I. P. Egorov, “Automorphisms in generalized spaces,”Itogi Nauki i Tekhniki, Ser. Probl. Geom.,10, 147–191 (1980).

    Google Scholar 

  57. L. I. Zhukova, “Riemannian spaces with projective group,”Uch. Zap. Penz. Fed. Inst.,124, 13–18 (1971).

    Google Scholar 

  58. L. I. Zhukova, “Projective mappings in Riemannian spaces (the isotropic case),”Uch. Zap. Penz. Ped. Inst.,124, 19–25 (1971).

    Google Scholar 

  59. L. I. Zhukova, “On groups of projective mappings of certain Riemannian spaces,”Uch. Zap. Penz. Ped. Inst,124, 26–30 (1971).

    Google Scholar 

  60. L. I. Zhukova, “Riemannian spaces admitting projective mappings,”Izv. Vuzov. Mat., No. 6, 37–41 (1973).

    Google Scholar 

  61. G. G. Ivanov, “Isometric motions in space-times with nonlinear scalar fields,”Izv. Vuzov. Mat., No. 2, 77–78 (1985).

    Google Scholar 

  62. G. G. Ivanov, “On the immersion of space-time with isometric and conformai motions,”Izv. Vuzov. Mat., No. 1, 61–63 (1985).

    Google Scholar 

  63. G. G. Ivanov and S. V. Chervon, “Exact solutions in theSO(3)-invariant nonlinear sigma-model connected with isometric and homothetic symmetries,”Gravitation and the Theory of Relativity [in Russian], Kazan University, No. 24, 37–44 (1987).

  64. V. R. Kaigorodov, “Semisymmetric Lorentz spaces with perfect holonomy group,”Gravitation and the Theory of Relativity [in Russian], Kazan University, No. 14–15, 113–120 (1978).

  65. N. R. Kamyshanskii, “One-parameter groups of motions of pseudo-Riemannian spaces of dimension 2,”Tr. seminara po vektor. i tenzor. anal, s ikh pril. k geom., mekh., i fiz. (Proceedings of the seminar on vector and tensor analysis and their applications to geometry, mechanics, and physics), Moscow State University, No. 19, 218–239 (1979).

  66. N. R. Kamyshanskii, “Classification of the complete simply connected subprojective pseudo-Riemannian spaces of V. F. Kagan,”Tr. seminara po vektor. i tenzor. anal, s ikh pril. k geom., mekh., i fiz. (Proceedings of the seminar on vector and tensor analysis and their applications to geometry, mechanics, and physics), Moscow State University, No. 20, 66–85 (1981).

  67. T. I. Kolesova, “Decomposition of the isotropy group of some homogeneous Riemannian spaces,”Differential geometry and Lie algebras, Mosk. Obi. Ped. Inst. (Moscow Regional Pedagogical Institute), 66–70 (1983).

  68. M. T. Kondaurov, “Motions and affine mappings in symmetric conformally Euclidean spaces” [in Russian], Publication of the JournalIzv. Vuzov. Matematika (1983).

  69. V. G. Kopp, “On invariant groups of infinitesimal motions of a three-dimensional Lorentz space,”Tr. Geom. seminara Kazan. Univ., No. 17, 13–29 (1986).

    Google Scholar 

  70. N. S. Lipatov, “Homothetic immobility in Gödel space,” in:Motions in Generalized Spaces [in Russian], Ryazan (1985), pp. 95–97.

  71. A. A. Lovkov, “On a simply transitive group of homothetic mappings inV 4,”Uch. Zap. Penz. Ped. Inst.,124, 70–72 (1971).

    Google Scholar 

  72. M. A. Malakhal'tsev, “Free motions of the group of isometries on a space whose curvature is of constant sign. The group of isometries and the Ricci tensor” [in Russian], Kazan University (1986).

  73. V. E. Mel'nikov, “On Riemannian spaces that admit a group of motions with decomposable isotropy group,”Izv. Vuzov. Mat., No. 2, 81–89 (1971).

    Google Scholar 

  74. V. E. Mel'nikov, “On groups of rotations of Riemannian spaces,” in:Proc. 27th Sci.-Tech. Conf. Mos. Inst. Radiotec., Electr., and Autom. [in Russian], Moscow (1978), pp. 53–60.

  75. J. Mikes, “On concircular vector fields ‘in the large’ on compact Riemannian spaces” [in Russian], Odessa University (1988).

  76. J. Mikes, “On the existence ofn-dimensional compact Riemannian spaces admitting nontrivial projective mappings ‘in the large’,”Dokl. Akad. Nauk SSSR,305, No. 3, 534–536 (1989).

    Google Scholar 

  77. J. Mikes and S. M. Pokas',Lie groups of mappings of second order in associated Riemannian spaces [in Russian], Odessa University (1981).

  78. G. G. Mikhailichenko, “Three-dimensional Lie algebras of mappings of a plane,”Sib. Mat. Zh.,23, No. 5, 132–141 (1982).

    Google Scholar 

  79. N. V. Mitskevich and Yu. E. Senin, “The topology and isometries of a De Sitter universe,”Dokl. Akad. Nauk SSSR,266, No. 3, 586–590 (1982).

    Google Scholar 

  80. I. M. Mitsnefes and I. A. Undalova, “One-parameter groups of motions of the pseudo-Riemannian space V4,” in:Proc. of the 4th Sci. Conf. Young Scholars Mech./Math. Fac. [in Russian], Gor'kii (1979), pp. 64–71.

  81. D. O. Moldobaev, “On the orders of the groups of conformai mappings in Riemannian spaces,” in:Studies in Integro-Differential Equations [in Russian], No. 16, 313–323 (1983).

    Google Scholar 

  82. D. O. Moldobaev, “On conformally extended groups of motions of Riemannian spaces,” in:Studies in Topological and Generalized Spaces [in Russian], 63–70 (1988).

  83. A. M. Mukhamedov, “Maximally movable gravitational fields with respect to almost projective motions that preserve a quadratic geodesic complex,”Tr. Geom. Seminara Kazan. Univ., No. 11, 64–69 (1979).

    Google Scholar 

  84. S. P. Novikov, “Some problems of gravitational theory,”Usp. Mat. Nauk,28, No. 5, p. 266 (1973).

    Google Scholar 

  85. S. Ya. Nus', “On infinitesimal isometries in the tangent bundle of the homethetically movable Riemannian spaceV 3 andV 4” [in Russian], Kazan University (1985).

  86. M. E. Osinovskii and O. A. Teslenko, “Global analysis of vacuum spaces of third type admitting a twodimensional commutative group of isometries,”Gravitation and the Theory of Relativity [in Russian], Kazan Univ., No. 16, 111–119 (1980).

  87. V. I. Pan'zhenskii, “On motions in a tangent bundle with the Sasaki metric,”Penz. Gos. Ped. Inst. (1989).

  88. A. Z. Petrov,New Methods in the General Theory of Relativity [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  89. S. M. Pokas',Motions in Associated Riemannian Spaces [in Russian], Odessa University (1980).

  90. S. M. Pokas',Infinitesimal Conformai Mappings in Associated Riemannian Spaces of Second Order [in Russian], Odessa University (1981).

  91. V. A. Popov, “Extensibility of local isometry groups,”Mat. Sb.,135, No. 1, 12–13 (1988).

    Google Scholar 

  92. K. Riives, “Lie subgroups of motions of the Euclidean spaceR 5 and their orbits. II,”Tartu Ülikooli toimetised (Tartu University Reports), No. 342, 83–109 (1974).

    Google Scholar 

  93. N. R. Sibgatullin, “On the theory of the neutron electrovacuum with Abelian group of motionsg 2 on V2,”Vestn. MGU. Mat.-Mekh., No. 2, 44–51 (1985).

    Google Scholar 

  94. N. S. Sinyukov, “Infinitesimal almost-geodesic mappings of affinely connected and Riemannian spaces. II,”Ukr. Geom. Sb., No. 11, 87–95 (1971).

    Google Scholar 

  95. N. S. Sinyukov,Geodesic Mappings of Riemannian Spaces [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  96. N. S. Sinyukov and S. M. Pokas', “Groups of motions of second degree in an associated Riemannian space,” in:Motions in Generalized Spaces [in Russian], Ryazan (1985), pp. 30–36.

  97. A. S. Solodovnikov, “Projective mappings of Riemannian spaaces,”Usp. Mat. Nauk,11, No. 4, 45–116 (1956).

    Google Scholar 

  98. A. E. Tralle, “On the group of isometries of a generalized Riemannian symmetric space,”Mat. Zametki,41, No. 2, 248–256 (1987).

    Google Scholar 

  99. M. A. Ulanovskii, “On conformai mappings of of the Lorentz metric,”Ukr. Geom. Sb., No. 27, 118–120 (1984).

    Google Scholar 

  100. I. A. Undalova, “Properly Riemannian spaces that admit a stationary-static group of motions,” Published byIzv. Vuzov. Mat., Kazan (1977).

  101. I. A. Undalova, “One-parameter groups of motions with isotropic trajectories,” in:Differentsial'nye i Integral'nye Uravneniya, Gor'kii (1986), pp. 58–62.

  102. I. A. Undalova,One-parameter groups of projective mappings of a Riemannian space with isotropic trajectories [in Russian], Gor'kii University (1986).

  103. I. A. Undalova and S. N. Aryasova, “A pseudo-Riemannian spaceV 4 admitting a one-parameter group of motions with an isolated fixed point” [in Russian], Gor'kii University (1987).

  104. I. A. Undalova and G. R. Eranova, “One-parameter groups of homotheties of a Riemannian space,”Sb. St. Gor'kov. Univ. (Gor'kii Univ. Rpts.), No. 2, 105–109 (1975).

    Google Scholar 

  105. I. A. Undalova and V. N. Markova, “Properly Riemannian spaces admitting groups of motions of type B,”Proc. 8th Sci. Conf. Young Scholars Mech./Math. Fac. Gor'kii Univ., 25–26 April 1983, Part 1, Gor'kii University (1983), pp. 114–118.

  106. I. A. Undalova and L. Yu. Osipova, “One-parameter groups of motions of type B of the Riemannian spacesV 3 andV 4,”Proc. 6th Sci. Conf. Young Scholars Mech./Math. Fac. Gor'kii Univ., Part 3, Gor'kii University (1981), pp. 392–400.

  107. I. A. Undalova and I. V. Tomarova, “A Pseudo-Riemannian spaceV 4 that admits a Killing field with singularity” [in Russian], Gor'kii University (1988).

  108. A. S. Ferzaliev, “On groups of motions in spaces with curvature tensor regarded as a cogredient function of a metric tensor and a skew-symmetric tensor,” in:Probl. Theory Grav. Elem. Part, [in Russian], Atomizdat, Moscow (1970), pp. 137–149.

    Google Scholar 

  109. R. B. Chinak, “On compact groups of isometries conjugate to a subgroup of the orthogonal group,”Sib. Mat. Zh.,28, No. 4, 207–209 (1987).

    Google Scholar 

  110. A. P. Chupakhin, “Nonlinear conformally invariant equations in spacesV 4 with nontrivial conformai group,” in:Solid State Dynamics [in Russian], No. 25, 122–132 (1976).

    Google Scholar 

  111. A. P. Chupakhin, “Nontrivial conformai groups in Riemannian spaces,”Dokl. Akad. Nauk SSSR,246, No. 5, 1056–1058 (1979).

    Google Scholar 

  112. Kh. Shadyev, “On infinitesimal homotheties in the tangent bundle of a Riemannian manifold,”Izv. Vuzov. Mat., No. 9, 77–79 (1984).

    Google Scholar 

  113. Kh. Shadyev, “On infinitesimal homotheties in the tangent bundle of a Riemannian manifold,” in:Probl. Multi-dim. Diff. Geom. and Appl. [in Russian], Samarkand (1988), pp. 12–26.

  114. I. G. Shandra, “Infinitesimal homothetic mappings in the cotangent bundle,”Proc. Sci. Conf. Young Scholars Odessa Univ., May 16–17, 1985, Odessa University (1985), pp. 152–164.

  115. A. P. Shirokov, “The geometry of tangent bundles and spaces over algebras,”Itogi Nauki i Tekhniki, Ser. Probl. Geom.,12, 61–95 (1980).

    Google Scholar 

  116. P. I. Shushpanov, “The group of motions of a spherical space and Lorentz transformations,”Nauch. Tr. Mosk. Inst. Nar. Khoz. (Proceedings of the Moscow Economics Institute), No. 96, 150–177 (1970).

    Google Scholar 

  117. Noill H. Ackerman and C. C. Hsiung, “Isometry of Riemannian manifolds to spheres. II,”Can. J. Math.,28, No. 1, 63–72 (1976).

    Google Scholar 

  118. Lynn L. Ackler and Chuan-Chih Hsiung, “Isometry of Riemannian manifolds to spheres,”Ann. Math. Pura ed Appl,99, 53–64 (1974).

    Google Scholar 

  119. Hassan Akbar-Zadeh and Raymond Couty, “Espaces à tenseur de Ricci parallèle admettant des transformations projectives,”C. R. Acad. Sci.,284, No. 15, A891-A893 (1977).

    Google Scholar 

  120. Hassan Akbar-Zadeh and Raymond Couty, “Espaces à tenseur de Ricci parallèle admettant des transformations projectives,”Rend. Math.,11, No. 1, 85–96 (1978).

    Google Scholar 

  121. Hassan Akbar-Zadeh and Raymond Couty, “Transformations projectives de certaines variétés à connexion métrique,”C. R. Acad. Sci., Sér. 1,298, No. 7, 153–156 (1984).

    Google Scholar 

  122. Hassan Akbar-Zadeh and Raymond Couty, “Transformations projectives des variétés munies d'une connexion métrique,”Ann. Math. Pura ed Appl, No. 148, 251–275 (1987).

    Google Scholar 

  123. A. V. Aminova, “The groups of symmetries in the spaces of general relativity,”Group-theoretic Methods in Mechanics. Proc. Int. Symp. Novosibirsk (1978), pp. 24–33.

  124. A. V. Aminova, “On skew-orthonormal frame and parallel symmetric bilinear form on Riemannian manifolds,”Tensor,45, 1–13 (1987).

    Google Scholar 

  125. A. V. Aminova, “On geodesic mappings of Riemannian spaces,”Tensor,46, 179–186 (1987).

    Google Scholar 

  126. Krishna Amur and S. S. Pujar, “Isometry to spheres of Riemannian manifolds admitting a conformai transformation group,”J. Diff. Geom.,12, No. 2, 247–252 (1977).

    Google Scholar 

  127. Giuseppe Arcidiacono, “A new projective relativity based on the De Sitter universe,”General Relativity and Gravitation,7, No. 11, 885–889 (1976).

    Google Scholar 

  128. Abhay Ashtekar and Anne Magnon-Ashtekar, “A technique for analyzing the structure of isometrics,”J. Math. Phys.,19, No. 7, 1567–1572 (1978).

    Google Scholar 

  129. Abhay Ashtekar and B. G. Schmidt, “Null infinity and Killing fields,”J. Math. Phys.,21, No. 4, 862–867 (1980).

    Google Scholar 

  130. Abhay Ashtekar and Basilis C. Xanthopoulos, “Isometries compatible with aysmptotic flatness at null infinity: a complete description,”J. Math. Phys.,19, No. 10, 2216–2222 (1978).

    Google Scholar 

  131. Daniel Asimov, “Finite groups as isometry groups,”Trans. Amer. Math. Soc.,216, 389–391 (1976).

    Google Scholar 

  132. L. Aulestia, L. Nuñez, A. Patiño, H. Rago, and L. Herrera, “RadiatingC metric: an example of a proper Ricci collineation,”Nuovo dm.,B80, No. 1, 133–142 (1984).

    Google Scholar 

  133. Christiane Barbance, “Transformations conformes des variétés lorentziennes homogènes,”Tensor,39, Commem. Vol. 3, 173–178 (1982).

    Google Scholar 

  134. Christiane Barbance and Yvan Kerbrat, “Sur les transformations conformes des variétés d'Einstein,”C. R. Acad. Sci.,AB286, No. 8, 391–394 (1978).

    Google Scholar 

  135. A. O. Barut, “External (kinematical) and internal (dynamical) conformai symmetry and discrete mass spectrum,” in:Group Theory and Non-Linear Problems, Dordrecht, Boston (1974), pp. 249–259.

  136. André Batbedat, “Sur la conjecture de A. Lichnerowicz,”Pubis. Dép. Math.,11, No. 3, 51–57 (1974).

    Google Scholar 

  137. J. Becker, J. Harnad, M. Perroud, and P. Winternitz, “Tensor fields invariant under subgroups of the conformai group of space-time,”J. Math. Phys.,19, No. 10, 2126–2153 (1978).

    Google Scholar 

  138. M. L. Bedran and B. Lesche, “An example of affine collineation in the Robertson-Walker metric,”J. Math. Phys.,27, No. 9, 2360–2361 (1986).

    Google Scholar 

  139. J. K. Beem, P. E. Ehrlich, and S. Markvorsen, “Timelike isometrics of space-times with nonnegative sectional curvature,” in:Topics in Differential Geometry: Colloq. Debrecen, 26 Aug.–1 Sept. 1984, Vol. 1, Amsterdam (1988), pp. 153–165.

  140. J. K. Beem, P. E. Ehrlich, and S. Markvorsen, “Timelike isometries and Killing fields,”Geom. dedic.,26, No. 3, 247–258 (1988).

    Google Scholar 

  141. Beverly K. Berger, “Homothetic and conformai motions in spacelike slices of solutions of Einstein's equations,”J. Math. Phys.,17, No. 7, 1268–1273 (1976).

    Google Scholar 

  142. David E. Blair, “On the zeros of a conformai vector field,”Nagoya Math. J.,55, 1–3 (1974).

    Google Scholar 

  143. Ashfaque H. Bokhari and Asghar Qadir, “Symmetries of static, spherically symmetric space-times,”J. Math. Phys.,28, No. 5, 1019–1022 (1987).

    Google Scholar 

  144. C. Bona, “Invariant conformai vectors in space-times admitting a groupG 3 of motions acting on spacelike orbitsS 2,”J. Math. Phys.,29, No. 11, 2462–2464 (1988).

    Google Scholar 

  145. Miloš Božek, “Existence of generalised symmetric Riemannian spaces with solvable isometry group,”Čas. pestov. mat.,105, No. 4, 368–384 (1980).

    Google Scholar 

  146. C. P. Boyer and J. D. Finley III, “Killing vectors in self-dual Euclidean Einstein spaces,”J. Math. Phys.,23, No. 6, 1126–1130 (1982).

    Google Scholar 

  147. Thomas P. Branson, “Quasi-invariance of the Yang-Mills equations under conformai transformations and conformai vector fields,”J. Diff. Geom.,16, No. 2, 195–203 (1981).

    Google Scholar 

  148. Frederick Brickell and Kentaro Yano, “Concurrent vector fields and Minkowski structures,”Kodai Math. Semin. Repts.,26, No. 1, 22–28 (1974).

    Google Scholar 

  149. A. J. Briginshaw, “Causality and the group structure of space-time,”Int. J. Theor. Phys.,19, No. 5, 329–345 (1980).

    Google Scholar 

  150. Marek Brodzki and Waclaw Sonelski, “Zastosowanie pewnych podgrup grupy afinicznej zespolonej w geometrycznej teorii seci electrycznych,”Zesz. nauk. Psl., No. 593, 3–15 (1979).

    Google Scholar 

  151. Jochen Brüning and Ernst Heintze, “Représentations des groupes d'isométries dan les sous-espaces propres du laplacien,”C. R. Acad. Sci.,286, No. 20 A221-A223 (1978).

    Google Scholar 

  152. Robert L. Bryant, “Metrics with holonomyG 2 or Spin(7),”Lect. Notes Math., No. 1111, 269–277 (1985).

    Google Scholar 

  153. Robert L. Bryant, “Metrics with exceptional holonomy,”Ann. Math.,126, No. 3, 525–576 (1987).

    Google Scholar 

  154. G. Burdet, J. Patera, M. Perrin, and P. Winternitz, “The optical group and its subgroups,”J. Math. Phys.,19, No. 8, 1758–1780 (1978).

    Google Scholar 

  155. W. Byers, “Isometry groups of manifolds of negative curvature,”Proc. Amer. Math. Soc.,54, 281–285 (1976).

    Google Scholar 

  156. M. Cahen, “A propos du groupe conforme de l'espace de Minkowski,”Bull. Cl. Sci. Acad. Roy. Belg.,62, No. 3, 199–206 (1976).

    Google Scholar 

  157. M. Cahen and Yvan Kerbrat, “Transformations conformes des espaces symétriques pseudo-riemanniens,”C. R. Acad. Sci.,A285, No. 5,B285, No. 5, A383-A385 (1977).

    Google Scholar 

  158. M. Cahen and Yvan Kerbrat, “Champs de vecteurs conformes et transformations conformes des espaces lorentziens symétriques,”J. math, pures et appl.,57, No. 2, 99–112 (1978).

    Google Scholar 

  159. M. Cahen and Yvan Kerbrat, “Transformations conformes des espaces symétriques pseudo-riemanniens,”Ann. math, pura ed appl., No. 122, 257–289 (1982).

    Google Scholar 

  160. Oscar A. Càmpoli, “Clifford isometries of compact homogeneous Riemannian manifolds,”Rev. Union mat. argent.,31, No. 1–2, 44–49 (1983).

    Google Scholar 

  161. Rongmei Cao, “Space-times admitting a group of conformai motions generated by a time-like vector field,”J. Nanjing Univ.,5, No. 2, 249–253 (1988).

    Google Scholar 

  162. J. Carot and Li Mas, “Conformai transformation and riseous fluids in general relativity,”J. Math. Phys.,27, No. 9, 2336–2339 (1986).

    Google Scholar 

  163. L. Castellani, R. D'Auria, P. Fré, and P. van Nieuwenhuizen, “Holonomy groups, sesquidual torsion fields, andSU(8) ind=11 supergravity,”J. Math. Phys.,25, No. 11, 3209–3213 (1984).

    Google Scholar 

  164. Su-Shing Chen and Patrick Eberlein, “Isometry groups of simply connected manifolds of nonpositive curvature,”Ill. J. Math.,24, No. 1, 73–103 (1980).

    Google Scholar 

  165. Cheng-Hsien Chep, “On a Riemannian manifold admitting Killing vectors whose covariant derivatives are conformai Killing tensors,”Kodai Math. Semin. Repts.,23, No. 2, 168–171 (1971).

    Google Scholar 

  166. F. J. Chinea, “Symmetries in tetrad theories,”Classical and Quantum Gravity,5, No. 1, 135–145 (1986).

    Google Scholar 

  167. C. J. S. Clarke, “The singular holonomy group,”Comm. Math. Phys.,58, No. 3, 291–297 (1978).

    Google Scholar 

  168. H. I. Cohen, O. Leringe, and Y. Sundblad, “The use of algebraic computing in general relativity,”Gen. Relat. and Gravit.,7, No. 3, 269–286, (1976).

    Google Scholar 

  169. C. D. Collinson, “Conservation laws in general relativity based upon the existence of preferred collineations,”Gen. Relat. and Gravit.,1, No. 2, 137–142 (1970).

    Google Scholar 

  170. C. D. Collinson, “Special subprojective motions in a Riemannian space,”Tensor,28, No. 2, 218–220 (1974).

    Google Scholar 

  171. C. D. Collinson, “Homothetic motions and the Hauser metric,”J. Math. Phys.,21, No. 1, 2601–2602 (1980).

    Google Scholar 

  172. C. D. Collinson, “Proper affine collineations in Robertson-Walker space-times,”J. Math. Phys.,29, No. 9, 1972–1973 (1988).

    Google Scholar 

  173. C. D. Collinson and P. N. Smith, “A comment on the symmetries of Kerr black holes,”Comm. Math. Phys.,56, No. 3, 277–279 (1977).

    Google Scholar 

  174. Carlos Currás-Bosch, “Killing vector fields and holonomy algebras,”Proc. Amer. Math. Soc.,90, No. 1, 97–102 (1984).

    Google Scholar 

  175. Carlos Currás-Bosch, “Killing vector fields and complex structures,”Lect. Notes Math., No. 1045, 36–42 (1984).

    Google Scholar 

  176. Carlos Currás-Bosch, “Infinitesimal transformations on noncompact manifolds,”Ann. mat. pura ed appl., No. 149, 347–360 (1987).

    Google Scholar 

  177. G. D'Ambra, “Isometry groups of Lorentz manifolds,”Invent, math.,92, No. 3, 555–565 (1988).

    Google Scholar 

  178. W. R. Davis and D. R. Oliver, Jr., “Matter field space-times admitting mappings satisfying vanishing contraction of the Lie deformation of the Ricci tensor,”Ann. Inst. H. Poincaré,A28, No. 2, 197–206 (1978).

    Google Scholar 

  179. George Debney, “Symmetry in Einstein-Maxwell space-time,”J. Math. Phys.,13, No. 10, 1469–1477 (1972).

    Google Scholar 

  180. L. Defrise-Carter, “Conformai groups and conformally equivalent isometry groups,”Comm. Math. Phys.,40, No. 3, 273–282 (1975).

    Google Scholar 

  181. Ryszard Deszcz, “Uwagi o kolineacjach rzutowych w pewnych klasach przestrzeni Riemanna,”Pr. nauk. Inst, matem. i fiz. teor. PWr., No. 8, 3–9 (1973).

    Google Scholar 

  182. Ryszard Deszcz, “On some Riemannian manifolds admitting a concircular vector field,”Demonstr. math.,9, No. 3, 487–495 (1976).

    Google Scholar 

  183. K. L. Duggal, “Existence of two Killing vector fields on the space-time of general relativity,”Tensor,32, No. 3, 318–322 (1978).

    Google Scholar 

  184. K. L. Duggal, “Einstein-Maxwell equations compatible with certain Killing vectors with light velocity,”Ann. mat. pura ed appl,120, 263–264 (1979).

    Google Scholar 

  185. K. L. Duggal and R. Sharma, “Conformai collineations and anisotropic fluids in general relativity,”J. Math. Phys.,27, No. 10, 2511–2513 (1986).

    Google Scholar 

  186. C. C. Dyer and E. Honig, “Geometry of homothetic Killing trajectories and stationary limit surfaces,”J. Math. Phys.,20, No. 1, 1–5 (1979).

    Google Scholar 

  187. Douglas M. Eardley, “Self-similar space-times: geometry and dynamics,”Comm. Math. Phys.,37, No. 4, 287–309 (1974).

    Google Scholar 

  188. Douglas M. Eardley, J. Isenberg, J. Marsden, and V. Moncrief, “Homothetic and conformai symmetries of solutions of Einstein's equations,”Comm. Math. Phys.,106, No. 1, 137–158 (1986).

    Google Scholar 

  189. Patrick Eberlein, “Isometry groups of simply connected manifolds of nonpositive curvature,”Acta, Math.,149, No. 1–2, 41–69 (1982).

    Google Scholar 

  190. Paul E. Ehrlich, “The displacement function of a timelike isometry,”Tensor,38, Comment. Vol. 2, 29–36 (1982).

    Google Scholar 

  191. Norio Ejiri, “A negative answer to a conjecture of conformai transformations of Riemannian manifolds,”Tensor,33, No. 2, 261–266 (1981).

    Google Scholar 

  192. P. Enghis, “Grupul de miscari al spatilorK 3*,”Stud. Univ. Babes-Bolydi Mat.,20, 16–20 (1975).

    Google Scholar 

  193. P. Ernotte, “Commutation properties of 2-parameter groups of isometrics,”J. Math. Phys.,21, No. 5, p. 954 (1980).

    Google Scholar 

  194. Frederick J. Ernst and Jerzy F. Plebański, “Killing structures and complexε-potentials,”Ann. Phys., (USA),107, No. 1–2, 266–282 (1977).

    Google Scholar 

  195. Abbas M. Faridi, “Einstein-Maxwell equations and the conformai Ricci collineations,”J. Math. Phys.,28, No. 6, 1370–1376 (1987).

    Google Scholar 

  196. Jacqueline Ferrand, “Sur un lemme d'Alekseevskii relatif aux transformations conformes,”C. R. Acad. Sci.,284, No. 2, A121-A123 (1977).

    Google Scholar 

  197. J. D. Finley III and J. F. Plebanski, “Further heavenly metrics and their symmetries,”J. Math. Phys.,17, No. 4, 585–596 (1976).

    Google Scholar 

  198. J. D. Finley III and J. F. Plebański, “Killing vectors in planeH H space,”J. Math. Phys.,19, No. 4, 760–766 (1978).

    Google Scholar 

  199. J. D. Finley III and J. F. Plebanski, “The classification of allH-spaces admitting a Killing vector,”J. Math. Phys.,20, No. 9, 1938–1945 (1979).

    Google Scholar 

  200. F. J. Flaherty, “Champs de Killing sur des variétés Lorentziennes,”C. R. Acad. Sci.,280, No. 8, A517-A518 (1975).

    Google Scholar 

  201. G. Fubini, “Sui gruppi trasformazioni geodetiche,”Mem. Accad. Sci. Torino, Cl. Fis. Mat. Nat.,53, No. 2, 261–313 (1903).

    Google Scholar 

  202. Masami Fujii, “Some Riemannian manifolds admitting a concircular scalar field,”Math. J. Okayama Univ.,16, No. 1, 1–9 (1973).

    Google Scholar 

  203. David Garfinkle and Qingjun Tian, “Space-times with cosmological constant and conformai Killing field have constant curvature,”Classical and Quantum Gravity,4, No. 1, 137–139 (1987).

    Google Scholar 

  204. Andrzej Gebarowski, “On conformai collineations in Riemannian spaces,”Pr. Nauk Inst. Matem, i Fiz. Teor., PWr., No. 8, 11–17 (1973).

    Google Scholar 

  205. E. Giodek, “On Riemannian conformally symmetric spaces admitting projective collineations,”Colloq. Math.,26, 123–128 (1972).

    Google Scholar 

  206. Carolyn S. Gordon and Edward N. Wilson, “Isometry groups of Riemannian solvmanifolds,”Trans. Amer. Math. Soc.,307, No. 1, 245–269 (1988).

    Google Scholar 

  207. Midori S. Goto, “On isometry group of a manifold without focal points,”J. Math. Soc. Jap.,34, No. 4, 653–663 (1982).

    Google Scholar 

  208. Midori S. Goto and Morikuni Goto, “Isometry groups of negatively pinched 3-manifolds,”Hiroshima Math. J.,9, No. 2, 313–319 (1979).

    Google Scholar 

  209. Alfred Gray, “Weak holonomy groups,”Math. Z.,123, No. 4, 290–300 (1971).

    Google Scholar 

  210. Robert E. Greene and Katsuhiro Shiohama, “The isometry groups of manifolds admitting nonconstant convex functions,”J. Math. Soc. Japan,39, No. 1, 1–16 (1987).

    Google Scholar 

  211. W. Grycak, “Null geodesic collineations in conformally recurrent manifolds,”Tensor,34, No. 3, 253–259 (1980).

    Google Scholar 

  212. W. Grycak, “On affine collineations in conformally recurrent manifolds,”Tensor,35, No. 1, 45–50 (1981).

    Google Scholar 

  213. Xiaoying Guo, “Riemannian manifolds admitting concircular vector fields,”J. Hangzhou Univ., Natur. Sci. Ed.,11, No. 2, 157–167 (1984).

    Google Scholar 

  214. William Dean Halford, “Petrov typeN vacuum metrics and homothetic motions,”J. Math. Phys.,20, No. 6, 1115–1117 (1979).

    Google Scholar 

  215. William Dean Halford and R. P. Kerr, “Einstein spaces and homothetic motions. I,”J. Math. Phys.,21, No. 1, 120–128 (1980).

    Google Scholar 

  216. G. S. Hall, “Curvature collineations and the determination of the metric from the curvature in general relativity, “Gen. Relat. and Gravit.,15, No. 6, 581–589 (1983).

    Google Scholar 

  217. G. S. Hall, “Curvature, metric and holonomy in general relativity,”Differ. Geom. and Appl., Proc. Conf. Brno, Aug. 24–30, 1986, pp. 127–136.

  218. G. S. Hall, “Singularities and homothety groups in space-time,”Classical and Quantum Gravity,5, No. 5, L77-L80 (1988).

    Google Scholar 

  219. G. S. Hall and J. Da Costa, “Affine collineations in space-time,”J. Math. Phys.,29, No. 11, 2465–2472 (1988).

    Google Scholar 

  220. Leopold Halpern, “Broken symmetry of Lie groups of transformations generating general relativistic theories of gravitation,”Int. J. Theor. Phys.,18, No. 11, 845–860 (1979).

    Google Scholar 

  221. J. P. Harnad and R. B. Pettitt, “Gauge theories for space-time symmetries. I,”J. Math. Phys.,17, No. 10, 1827–1837 (1976).

    Google Scholar 

  222. R. A. Harris and J. D. Zund, “An investigation of Dubourdien's list of space-times which admit holonomy groups,”J. Math. Phys.,19, No. 10, 2052–2054 (1978).

    Google Scholar 

  223. R. A. Harris and J. D. Zund, “An investigation of the Kaigorodov space-times. I,”Tensor,36, No. 3, 233–241 (1982).

    Google Scholar 

  224. R. A. Harris and J. D. Zund, “An investigation of the Kaigorodov space-times. II.”Tensor,36, No. 3, 242–248 (1982).

    Google Scholar 

  225. R. A. Harris and J. D. Zund, “Continuous groups of the Kasner space-times,”Tensor,36, No. 3, 270–274 (1982).

    Google Scholar 

  226. R. A. Harris and J. D. Zund, “An investigation of Kruchkovich's homogeneous space-times,”Tensor,37, Commem. Vol. 1, 85–89 (1982).

    Google Scholar 

  227. R. A. Harris and J. D. Zund, “Generalized Osinovsky space-times,”Tensor,40, No. 1, 49–53 (1983).

    Google Scholar 

  228. B. Kent Harrison and James L. Stevens, “Using group theory to solve certain equations arising in general relativity,”Encyclia (formerlyProc. Utah Acad. Sci., Arts, and Lett.),55, 73–76 (1978).

    Google Scholar 

  229. Peter Havas and Jerzy Plebanski, “Conformai extensions of the Galilei group and their relation to the Schrödinger group,”J. Math. Phys.,19, No. 2, 482–493 (1978).

    Google Scholar 

  230. A. Held, “Killing vectors in empty space algebraically special metrics. I,”Gen. Relat. and Gravit.,7, No. 2, 177–198 (1976).

    Google Scholar 

  231. A. Held, “Killing vectors in empty space algebraically special metrics. II,”J. Math. Phys.,17, No. 1, 39–45 (1976).

    Google Scholar 

  232. Marc Henneaux, “Gravitational fields, spinor fields, and groups of motions,”Gen. Relat. and Gravit.,12, No. 2, 137–147 (1980).

    Google Scholar 

  233. L. Herrera, J. Jiménez, L. Leal, J. Ponce de Leon, M. Esculpi, and V. Galina, “Anisotropic fluids and conformai motions in general relativity,”J. Math. Phys.,25, No. 11, 3274–3278 (1984).

    Google Scholar 

  234. L. Herrera and J. Ponce de Leon, “Perfect fluid spheres admitting a one-parameter group of conformai motions,”J. Math. Phys.,26, No. 4, 778–784 (1985).

    Google Scholar 

  235. Hitosi Hiramatu, “On essentially isometric conformai transformation groups,”Kodai Math. Semin. Repts.,24, No. 2, 212–216 (1972).

    Google Scholar 

  236. Hitosi Hiramatu, “On Riemannian manifolds admitting a one-parameter conformai transformation group,”Tensor,28, No. 1, 19–24 (1974).

    Google Scholar 

  237. Hitosi Hiramatu, “On integral inequalities and their applications in Riemannian manifolds,”Geom. Dedic.,7, No. 3, 375–386 (1978).

    Google Scholar 

  238. Hitosi Hiramatu, “Integral inequalities and their applications in Riemannian manifolds admitting a projective vector field,”Geom. Dedic.,9, No. 4, 501–505 (1980).

    Google Scholar 

  239. Chuan-Chih Hsiung and Louis W. Stern, “Conformality and isometry of Riemannian manifolds to spheres,”Trans. Amer. Math. Soc.,163, 65–73 (1972).

    Google Scholar 

  240. Heinz Huber, “Über die Isometriegruppe einer kompakten Mannigfaltigkeit negativer Krümmung,”Helv. Phys. Acta,45, No. 2, 277–288 (1972).

    Google Scholar 

  241. Z. Hussin and S. Sinzinkayo, “Conformai symmetry and constants of motion,”J. Math. Phys.,26, No. 5, 1072–1076 (1985).

    Google Scholar 

  242. Ryosuke Ichida, “On Riemannian manifolds of non-positive sectional curvature admitting a Killing vector field,”Math. J. Okayama Univ.,17, No. 2, 131–134 (1975).

    Google Scholar 

  243. Edwin Ihrig, “The holonomy group in general relativity and the determination ofg ij from Ti j,”Gen. Relat. and Gravit.,7, No. 3, 313–323 (1976).

    Google Scholar 

  244. Edwin Ihrig and D. K. Sen. “Uniqueness of timelike Killing vector fields,”Ann. Inst. H. Poincaré,A23, No. 3, 297–301 (1975).

    Google Scholar 

  245. Hans-Christoph Im Hof, “Über die Isometriegruppe bei kompakten Mannigfaltigkeiten negativer Krümmung,”Comm. Mat. Helv.,48, No. 1, 14–30 (1973).

    Google Scholar 

  246. Edwin Ihrig and Ernst A. Ruh, “Actions isométriques sur des variétés riemanniennes pincées,”C. R. Acad. Sci.,280, No. 13, A901-A904 (1975).

    Google Scholar 

  247. Shigeru Ishihara and Mariko Konishi, “Fibred Riemannian space with triple of Killing vectors,”Kodai Math. Semin. Repta.,25, No. 2, 175–189 (1973).

    Google Scholar 

  248. Mark Israelit, “Bimetric Killing vectors and generation laws in bimetric theories of gravitation,”Gen. Relat. and Gravit,13, No. 6, 523–529 (1981).

    Google Scholar 

  249. Minoru Isu, “Notes on integral inequality for Riemannian manifolds admitting an infinitesimal conformai transformation,”Tensor,44, No. 3, 261–264 (1987).

    Google Scholar 

  250. Toshihiro Iwai, “Liftings of infinitesimal transformations of a Riemannian manifold to its tangent bundle, with applications to dynamical systems,”Tensor,31, No. 1, 98–102 (1977).

    Google Scholar 

  251. Toshihiro Iwai, “On infinitesimal affine and isometric transformations preserving respective vector fields,”Kodai Math. J.,1, No. 2, 171–186 (1978).

    Google Scholar 

  252. L. Kannenberg, “Killing vectors in gauge supersymmetry,”J. Math. Phys.,19, No. 10, 2203–2206 (1978).

    Google Scholar 

  253. Adolf Karger, “Geometry of the motion of robot manipulators,”Manuscr. Math.,62, No. 1, 115–126 (1988).

    Google Scholar 

  254. Atsushi Katsuda, “The isometry groups of compact manifolds wth negative Ricci curvature,”Proc. Amer. Math. Soc.,104, No. 2, 587–588 (1988).

    Google Scholar 

  255. Gerald H. Katzin and Jack Levine, “Charge conservation as concomitant of conformai motions coupled to generalized gauge transformations,”J. Math. Phys.,21, No. 4, 902–908 (1980).

    Google Scholar 

  256. Louis H. Kauffman, “Transformations in special relativity,”Int. J. Theor. Phys.,24, No. 3, 223–236 (1985).

    Google Scholar 

  257. Yvan Kerbrat, “Existence d'homothéties infinitésimales sur une variété munie d'une connexion linéaire symétrique complète,”C. R. Acad. Sci.,280, No. 9, A587-A589 (1975).

    Google Scholar 

  258. Yvan Kerbrat, “Transformations conformes des variétés pseudoriemanniennes,”J. Diff. Geom.,11, No. 4, 547–571 (1976).

    Google Scholar 

  259. R. P. Kerr and G. C. Debney, Jr., “Einstein spaces with symmetry groups,”J. Math. Phys.,11, No. 9, 2807–2817 (1970).

    Google Scholar 

  260. Paul Kersten and Martin Ruud, “The harmonic map and Killing fields for self-dualSU(3) Yang-Mills equations,”J. Phys. A: Math, and Gen.,17, No. 5, L227-L230 (1984).

    Google Scholar 

  261. Andrzej Kieres, “A pseudo-group of motions of a certain pseudo-Riemannian space,”Ann. UMCS,A34, 65–71 (1980).

    Google Scholar 

  262. In-Bae Kim, “Special concircular vector fields in Riemannian manifolds,”Hiroshima Math. J.,13, No. 1, 77–91 (1982).

    Google Scholar 

  263. Shin-ichi Kitamura, “The groups of motions of some stationary axially symmetric space-times,”Tensor,35, No. 2, 183–186 (1981).

    Google Scholar 

  264. Shoshichi Kobayashi, “Transformation groups in differential geometry,”Ergeb, der Math. und ihrer Grenzgeb., No. 70, Springer, Berlin (1972).

    Google Scholar 

  265. Shoshichi Kobayashi, “Projective invariant metrics for Einstein spaces,”Nagoya Math. J.,73, 171–174 (1979).

    Google Scholar 

  266. Shoshichi Kobayashi and Katsumi Nomizu,Foundations of Differential Geometry, Vols. 1–2, Interscience, New York (1963–1969).

    Google Scholar 

  267. Hidemaro Kôjyô, “On conformai Killing tensors of a Riemannian manifold of constant curvature,”Hokkaido Math. J.,2, No. 2, 236–242 (1973).

    Google Scholar 

  268. Charalampos A. Kolassis, “On the effect of space-time isometries on the neutrino fields,”J. Math. Phys.,23, No. 9, 1630–1638 (1982).

    Google Scholar 

  269. Czesław Konopka, “On some transformations in separately Einstein spaces,”Pr. Nauk Inst. Mat. i Fiz. Teor. PWr., No. 8, 25–32 (1973).

    Google Scholar 

  270. Oldrich Kowalski, “Free periodic isometries of Riemannian manifolds,”J. London Math. Soc.,20, No. 2, 334–338 (1979).

    Google Scholar 

  271. Tsunehira Koyanagi, “On a certain property of a Riemannian space admitting a special concircular scalar field,”J. Fac. Sci. Hokkaido Univ., Ser. I,22, No. 3–4, 154–157 (1972).

    Google Scholar 

  272. J. P. Krisch, “On the Killing surface-event horizon relation,”J. Math. Phys.,22, No. 4, 663–666 (1981).

    Google Scholar 

  273. Martin Légaré, “Symmetry reduction and simple supersymmetric models,”J. Math. Phys.,28, No. 4, 935–939 (1987).

    Google Scholar 

  274. Jack Levine, “Curvature collineations in Riemannian spaces admittingr fields of parallel vectors,”Tensor,24, 389–392 (1972).

    Google Scholar 

  275. Andre Lichnerowicz,Geometry of Groups of Transformations, Leyden (1977).

  276. Mu-Chou Liu, “Local holonomy groups of induced connections,”Proc. Amer. Math. Soc.,42, No. 1, 272–278 (1974).

    Google Scholar 

  277. J. F. Torres Lopera, “Geodesies and conformai transformations of Heisenberg-Reiter spaces,”Trans. Amer. Math. Soc.,306, No. 2, 489–498 (1988).

    Google Scholar 

  278. Eric A. Lord, “Geometrical interpretation of Inönü-Wigner contractions,”Int. J. Theor. Phys.,24, No. 7, 723–730 (1985).

    Google Scholar 

  279. Eric A. Lord, “Gauge theory of a group of diffeomorphisms. II. The conformai and de Sitter groups,”J. Math. Phys.,27, No. 12, 3051–3054 (1986).

    Google Scholar 

  280. Eric A. Lord and P. Goswami, “Gauge theory of a group of diffeomorphisms. I. General principles,”J. Math. Phys.,27, No. 9, 2415–2422 (1986).

    Google Scholar 

  281. B. Lukács, Z. Perjés, and A. Sebestyén, “Null Killing vectors,”J. Math. Phys.,22, No. 6, 1248–1253 (1981).

    Google Scholar 

  282. Gordon W. Lukesh, “Compact transitive isometry groups,”London Math. Soc. Lect. Note Ser., No. 26, 301–304 (1977).

    Google Scholar 

  283. Gordon W. Lukesh, “Isometry groups acting with one orbit type,”Geom. Dedic.,12, No. 4, 347–350 (1982).

    Google Scholar 

  284. Walter C. Lynge, “Zero points of Killing vector fields, geodesic orbits, curvature, and cut locus,”Trans. Amer. Math. Soc.,172, 501–506 (1972).

    Google Scholar 

  285. Walter C. Lynge, “Sufficient conditions for periodicity of a Killing vector field,”Proc. Amer. Math. Soc.,38, No. 3, 614–616 (1973).

    Google Scholar 

  286. R. Maartens, “Affine collineations in Robertson-Walker space-time.”J. Math. Phys.,28, No. 9, 2051–2052 (1987).

    Google Scholar 

  287. R. Maartens, D. P. Mason, and M. Tsamparlis, “Kinematic and dynamic properties of conformai Killing vectors in anisotropic fluids,”J. Math. Phys.,27, No. 12, 2987–2994 (1986).

    Google Scholar 

  288. Malcolm MacCallum, “The mathematics of anisotropic spatially-homogeneous cosmologies. Physics of the Expanding Universe. Cracow School of Cosmology. Jodlowy Dwor, Sept., 1978,Lect. Notes Phys.,109, 1–59 (1979).

    Google Scholar 

  289. Masao Maeda, “The isometry groups of compact manifolds with non-positive curvature,”Proc. Jap. Acad.,51, Suppl, 790–794 (1975).

    Google Scholar 

  290. M. D. Maia, “Combined symmetries in curved space-times,”J. Math. Phys.,25, No. 6, 2090–2094 (1984).

    Google Scholar 

  291. L. N. Mann, “Gaps in the dimensions of isometry groups of Riemannian manifolds,”J. Diff. Geom.,11, No. 2, 293–298 (1976).

    Google Scholar 

  292. Freydoon Mansouri and Louis Witten, “Isometries and dimensional reduction,”J. Math. Phys.,25, No. 6, 1991–1994 (1984).

    Google Scholar 

  293. Y. B. Maralabhavi, “A note on the conformai transformation in a W-recurrent space,”Indian J. Pure and Appl. Math.,16, No. 4, 365–372 (1985).

    Google Scholar 

  294. Stefano Marchiafava, “Alcune osservazioni riguardanti i gruppi di LieG 2 e Spin(7), candidati a gruppi di olonomia,”Ann. Mat. Pura ed Appl,129, 247–264 (1981).

    Google Scholar 

  295. Stefano Marchiafava, “Characterization of Riemannian manifolds with weak holonomy group G2 (following A. Gray),”Math. Z.,178, No. 2, 157–162 (1981).

    Google Scholar 

  296. George Mărgulescu, “Equations invariantes par rapport au groupe conforme affine,”Rev. Raum. Math. Pures et Appl,19, No. 2, 209–212 (1974).

    Google Scholar 

  297. George Mărgulescu, “Les représentations spinorielles du groupe conforme de l'espace de Minkowski,” in:Lucr. Coloc. Nat. Geom. si Topol, Busteni, 27–30 iun., 1981, Bucuresti (1983), pp. 226–233.

  298. Jésus Martin, “Etude de certains groupes d'isométries agissants sur la variété espace-temps,”C. R. Acad. Sci.,271, No. 20, A1036-A1038 (1970).

    Google Scholar 

  299. E. Martinez and J. L. Sanz, “Space-times with intrinsic symmetries on the three-spacest= constant,”J. Math. Phys.,26, No. 4, 785–791 (1985).

    Google Scholar 

  300. Hiroo Matsuda, “On n-dimensional Lorentz manifolds admitting an isometry group of dimensionn(n-l)/2 + 1 forn ≥ 4,”Hokkaido Math. J.,15, No. 2, 309–315 (1986).

    Google Scholar 

  301. Hiroo Matsuda, “Onn-dimensional Lorentz manifolds admitting an isometry group of dimension n(n-l)/2 + 1,”Proc. Amer. Math. Soc.,100, No. 2, 329–334 (1987).

    Google Scholar 

  302. J. Dermott McCrea, “Poincaré gauge theory of gravitation: foundations, exact solutions, and computer algebra,”Led. Notes Math., No. 1251, 222–237 (1987).

    Google Scholar 

  303. D. P. Mason and R. Maartens, “Kinematics and dynamics of conformai collineations in relativity,”J. Math. Phys.,28, No. 9, 2182–2186 (1987).

    Google Scholar 

  304. D. P. Mason and M. Tsamparlis, “Spacelike conformai Killing vectors and spacelike congruences,”J. Math. Phys.,26, No. 11, 2881–2901 (1985).

    Google Scholar 

  305. C. B. G. McIntosh, “Homothetic motions in general relativity,”Gen. Relat. and Gravit.,7, No. 2, 199–213 (1976).

    Google Scholar 

  306. C. B. G. McIntosh, “Homothetic motions with null homothetic bivectors in general relativity,”Gen. Relat. and Gravit.,7, No. 2, 215–218 (1976).

    Google Scholar 

  307. C. B. G. McIntosh, “Symmetries and exact solutions of Einstein's equations. Gravitational Radiation, Collapsed Objects, and Exact Solutions. Proc. Einstein Cent. Summer School, Perth, Jan. 1979,”Led. Notes Phys., No. 125, 469–476 (1980).

    Google Scholar 

  308. C. B. G. McIntosh and W. D. Haiford, “The Riemann tensor, the metric tensor, and curvature collineations in general relativity,”J. Math. Phys.,23, No. 3, 436–441 (1982).

    Google Scholar 

  309. M. B. Mensky, “Group of parallel transports and description of particles in curved space-time,”Lett. Math. Phys.,2, No. 3, 175–180 (1978).

    Google Scholar 

  310. Kam-Ping Mok, “On the differential geometry of frame bundles of Riemannian manifolds,”J. reine und angew. Math.,302, 16–31 (1978).

    Google Scholar 

  311. Vincent Moncrief, “Space-time symmetries and linearization stability of the Einstein equations,”J. Math. Phys.,17, No. 10, 1893–1902 (1976).

    Google Scholar 

  312. Osvaldo M. Moreschi and George A. J. Sparling, “On Riemannian spaces with conformai symmetries, or a tool for the study of generalized Kaluza-Klein theories,”J. Math. Phys.,24, No. 2, 303–310 (1983).

    Google Scholar 

  313. Gaetano Moschetti, “Homothetic solutions of Einstein's equations and shock waves,”J. Math. Phys.,22, No. 4, 830–834 (1981).

    Google Scholar 

  314. Tadashi Nagano and Takushiro Ochiai, “On compact Riemannian manifolds admitting essential projective transformations,”J. Fac. Sci. Univ. Tokyo, Sec. 1A,33, No. 2, 233–246 (1986).

    Google Scholar 

  315. J. Navez, “The groups of motions of space-times admitting a parallel null vector field,”Bull. Soc. Roy. Sci. Liège,41, No. 9–10, 484–502 (1972).

    Google Scholar 

  316. N. I. Nedită, “On space-times with Killing pairing,”Bull. Math. Soc. Sei. Math. RSR,22, No. 2, 175–182 (1978).

    Google Scholar 

  317. Y. Ne'eman and T. N. Sherry, “Affine extensions of supersymmetry: The finite case,”Nucl. Phys.,B138, No. 1, 31–44 (1978).

    Google Scholar 

  318. L. K. Norris and W. R. Davis, “Infinitesimal holonomy group, structure and geometrization,”Ann. Inst. H. Poincaré,A31, No. 4, 387–398 (1979).

    Google Scholar 

  319. Morio Obata, “The conjectures on conformai transformations of Riemannian manifolds,”J. Diff. Geom.,6, No. 2, 247–258 (1971).

    Google Scholar 

  320. Takushiro Ochiai and Tsunero Takahashi, “The group of isometries of a left-invariant Riemannian metric on a Lie group,”Math. Ann.,223, No. 1, 91–96 (1976).

    Google Scholar 

  321. Dan I. Papuc and Ion P. Popescu, “Remarques sur les actions des groupes projectifs et affines sur leurs algèbres de Lie,”C. R. Acad. Sci.,A279, No. 14, 565–567 (1974).

    Google Scholar 

  322. Matilde Pascua, “Una soluzione delle equazioni di Einstein-Maxwell ammettente un gruppoG 7 di automorfismi,”Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat., e Natur.,59, No. 1–2, 91–99 (1975).

    Google Scholar 

  323. Eliano Pessa, “A new unified field theory based on the conformai group,”Gen. Relat. and Gravit.,12, No. 10, 857–862 (1980).

    Google Scholar 

  324. Pierre Pigeaud and Moussa Sakoto, “Transformations infinitésimales conformes fermées des variétés riemanniennes,”C. R. Acad. Sci.,274, No. 19, A1406-A1408 (1972).

    Google Scholar 

  325. Jean-François Pommaret, “Thermodynamique et théorie des groupes,”C. R. Acad. Sci., Ser. 1,307, No. 16, 839–842 (1988).

    Google Scholar 

  326. G. Prasad, “Relativistic electromagnetic fluids and Ricci collineations,”Indian J. Pure and Appl. Math.,10, No. 1, 94–99 (1979).

    Google Scholar 

  327. Asghar Qadir and M. Ziad, “Static spherically symmetric space-times with six Killing vectors,”J. Math. Phys.,29, No. 11, 2473–2474 (1988).

    Google Scholar 

  328. Pham Mau Quan, “Sur les transformations qui laissent invariantes les équations d'Einstein,”C. R. Acad. Sci.,285, 1081–1084 (1977).

    Google Scholar 

  329. Shri Ram and H. S. Pandey, “Curvature collineations in a certain cosmological space-time,”Indian J. Pure and Appl. Math.,13, No. 10, 1200–1203 (1982).

    Google Scholar 

  330. M. J. Reboucas and J. E. Aman, “Computer-aided study of a class of Riemannian space-times,”J. Math. Phys.,28, No. 4, 888–892 (1987).

    Google Scholar 

  331. W. Roter, “Some remarks on infinitesimal conformai motions in conformally symmetric manifolds,”Tensor,36, No. 1, 8–10 (1981).

    Google Scholar 

  332. Moussa Sakoto, “Transformations infinitésimales conformes d'une variété riemannienne quotient,”C. R. Acad. Sci.,272, No. 21, A1407-A1409 (1971).

    Google Scholar 

  333. Eliane Salem, “Une généralisation du théorème de Mayers-Steenrod aux pseudo-groupes d'isométries,”Ann. Inst. Fourier,38, No. 1, 185–200 (1988).

    Google Scholar 

  334. Bartolo Sanno, “Sulle superficie che si corrispondono per transformazione di Lie e su un formulario completo tra gli invarianti del gruppo conforme e gli invarianti del gruppo proiettivo,”Rend. Circ. Math. Palermo,24, No. 1–2, 168–176 (1975).

    Google Scholar 

  335. B. G. Schmidt, “Homogeneous Riemannian spaces and Lie algebras of Killing fields,”Gen. Relat. and Gravit.,2, No. 2, 105–120 (1971).

    Google Scholar 

  336. Victor Schroeder, “Tits metric and the action of isometries at infinity,” in:Manifolds of Positive Curvature, Boston (1985), pp. 212–220.

  337. Matthias Schubert, “Die Geometrie nilpotenter Liegruppen mit linksinvarianter Metrik,”Bonn. Math. Schr., No. 149 (1983).

  338. Ramesh Sharma, “A relation between an affine Killing vector and the strain tensor of a pseudo-Riemannian manifold,”Math. Repts. Acad. Sci. Can.,4, No. 5, 305–307 (1982).

    Google Scholar 

  339. Ramesh Sharma, “Proper conformai symmetries of conformai symmetric space-times,”J. Math. Phys.,29, No. 11, 2421–2422 (1988).

    Google Scholar 

  340. Ramesh Sharma and K. L. Duggal, “Characterization of an affine conformai vector field,”Math. Repts. Acad. Sci. Can.,7, No. 3, 201–205 (1985).

    Google Scholar 

  341. D. J. Shetty, “On harmonic and Killing vector fields in a submanifold,”Indian J. Pure and Appl. Math.,11, No. 8, 983–987 (1980).

    Google Scholar 

  342. Richard F. Sigal, “A note on proper homothetic motions,”Gen. Relat. and Gravit.,5, No. 6, 737–739 (1974).

    Google Scholar 

  343. S. T. C. Siklos, “Some Einstein spaces and their global properties,”J. Phys. A: Math, and Gen.,14, No. 2, 395–409 (1981).

    Google Scholar 

  344. K. P. Singh and D. N. Sharma, “Ricci and Maxwell collineations in a null electromagnetic field,”J. Phys. A: Math, and Gen.,8, No. 12, 1875–1881 (1975).

    Google Scholar 

  345. K. P. Singh and Shri Ram, “Curvature collineation for plane symmetric cosmological model,”Indain J. Pure and Appl. Math.,5, No. 3, 241–245 (1974).

    Google Scholar 

  346. S. Sinzinkayo and J. Demaret, “On solutions of Einstein and Einstein-Yang-Mills equations with (maximal) conformai subsymmetries,”Gen. Relat. and Gravit.,17, No. 2, 187–201 (1985).

    Google Scholar 

  347. Dumitru Smaranda, “On the Riemann space with intransitive group of motions,”Tensor,28, No. 3, 273–274 (1974).

    Google Scholar 

  348. P. K. Smrz, “Relativity and deformed Lie groups,”J. Math. Phys.,19, No. 10, 2085–2088 (1978).

    Google Scholar 

  349. P. K. Smrz, “A gauge field theory of spacetime based on the de Sitter group,”Found. Phys.,10, No. 3–4, 267–280 (1980).

    Google Scholar 

  350. G. E. Sobczyk, “Killing vectors and embedding of exact solutions in general relativity,” in:Clifford Algebras and Appl. Math. Phys.: Proc. NATO and SERC Workshop, Canterbury, 15–27 Sept., 1985, Dordrecht (1986), pp. 227–244.

  351. F. Söler and G. Séguin, “Groupe d'isométries de S2, S2 xR, S 3, etSi3 x R,”Tensor,36, No. 3, 249–255 (1982).

    Google Scholar 

  352. P. Stavre, “Asupra unor cîmpuri de vectori,”Stud, si cerc, mat.,26, No. 2, 281–287 (1974).

    Google Scholar 

  353. Ann K. Stehney and Richard S. Millman, “Riemannian manifolds with many Killing vector fields,”Fund. Math.,105, No. 3, 241–247 (1980).

    Google Scholar 

  354. Kunio Sugahara, “The isometry group and the diameter of a Riemannian manifold with positive curvature,”Math. Jap.,27, No. 5, 631–634 (1982).

    Google Scholar 

  355. T. Suguri and S. Ueno, “Some notes on infinitesimal conformai transformations,”Tensor,24, 253–260 (1972).

    Google Scholar 

  356. Yoshihiko Suyama, “Riemannian manifolds admitting commutative Killing vector fields,”Math. J. Okayama Univ.,26, 199–218 (1984).

    Google Scholar 

  357. Yoshihiko Suyama and Yotaro Tsukamoto, “Riemannian manifolds admitting a certain conformal transformation group,”J. Diff. Geom.,5, No. 3–4, 415–426 (1971).

    Google Scholar 

  358. Alois Svec, “Finite Killing vector fields,”Comment. Math. Univ. Carol,18, No. 1, 65–69 (1977).

    Google Scholar 

  359. L. B. Szabados, “Commutation properties of cyclic and null Killing symmetries,”J. Math. Phys.,28, No. 11, 2688–2691 (1987).

    Google Scholar 

  360. D. A. Szafron, “Intrinsic isometry groups in general relativity,”J. Math. Phys.,22, No. 3, 543–548 (1981).

    Google Scholar 

  361. J. Szenthe, “Sur les sous-groupes d'isotropie d'actions isométriques sur les variétés riemanniennes à courbure positive,”Stud. Sci. Math. Hung.,15, No. 1–3, 89–92 (1980).

    Google Scholar 

  362. J. Szenthe, “A generalization of the Weyl group,”Acta Math. Hung.,41, No. 3–4, 347–357 (1983).

    Google Scholar 

  363. Shun-ichi Tachibana, “On the geodesic projective transformation in Riemannian spaces,”Hokkaido Math. J.,1, No. 1, 87–94 (1972).

    Google Scholar 

  364. Shun-ichi Tachibana, “On examples of Riemannian spaces harmonic relative to Killing vectors,”Natur. Sci. Rept. Ochanomizu Univ.,23, No. 1, 1–7, (1972).

    Google Scholar 

  365. Shun-ichi Tachibana, “On Riemannian spaces admitting geodesic conformai transformations,”Tensor,25, 323–331, (1972).

    Google Scholar 

  366. Hitoshi Takagi, “Conformally flat Riemannian manifolds admitting a transitive group of isometries,”Tôhoku Math. J.,27, No. 1, 103–110 (1975).

    Google Scholar 

  367. Kwoichi Tandai, “Riemannian manifold admitting more thann—1 linearly independent solutions of ∇2ϱt+ c2ϱg=0,”Hokkaido Math. J.,1, No. 1, 12–15 (1972).

    Google Scholar 

  368. N. Tariq and B. 0. J. Tupper, “Curvature collineations in Einstein-Maxwell space-times and in Einstein spaces,”Tensor,31, No. 1, 42–48 (1977).

    Google Scholar 

  369. G. F. Torres del Castillo, “Killing vectors in algebraically special space-times,”J. Math. Phys.,25, No. 6, 1980–1984 (1984).

    Google Scholar 

  370. R. W. Tucker, “Affine transformations and the geometry of superspace,”J. Math. Phys.,22, No. 2, 422–429 (1981).

    Google Scholar 

  371. Constantin Udriste, “Proprietati ale cîmpurilor vectoriale afine si proiective,”Stud, si Cerc. Mat.,36, No. 5, 444–452 (1984).

    Google Scholar 

  372. Constantin Udriste, “Cîmpuri vectoriale conforme pe varietati Riemann ou tensorul Rirri negativ semidefinit,” in:Lucr. Conf. Nat. Geom. si Topol., Tîrgoviste, 12–14 Apr., 1986, Bucuresti (1988), pp. 311–314.

  373. Bernard Vignon, “Sur les vecteurs conformes fermés d'une variété pseudo-riemannienne,”C. R. Acad. Sci.,276, No. 26, A1689-A1691 (1973).

    Google Scholar 

  374. Gheorghe Vrănceanu, “Sur les groupes d'holonomie des espacesV n plongés dansE n+p sans torsion,”Rev. Roum. Math. Pures et Appl.,19, No. 1, 125–128 (1974).

    Google Scholar 

  375. J. Wainwright and P. A. E. Yaremovicz, “Killing vector fields and the Einstein-Maxwell field equations with perfect fluid source,”Gen. Relat. and Gravit.,7, No. 4, 345–359 (1976).

    Google Scholar 

  376. J. Wainwright and P. A. E. Yaremovicz, “Symmetries and the Einstein-Maxwell field equations. The null field case,”Gen. Relat. and Gravit.,7, No. 7, 593–608 (1976).

    Google Scholar 

  377. Edward N. Wilson, “Isometry groups on homogeneous nilmanifolds,”Geom. Dedic.,12, No. 3, 337–346 (1982).

    Google Scholar 

  378. M. L. Wooley, “On Killing vectors and invariance transformations of the Einstein-Maxwell equations,”Math. Proc. Cambridge Phil. Soc.,80, No. 2, 357–364 (1976).

    Google Scholar 

  379. Toshikiyo Yamada, “On conharmonic and concircular transformations,”J. Asahikawa Techn. Coll., No. 16, 163–170 (1979).

    Google Scholar 

  380. Takao Yamaguchi, “The isometry groups of Riemannian manifolds admitting strictly convex functions,”Ann. Sci. ec. Norm. Sup.,15, No. 1, 205–212 (1982).

    Google Scholar 

  381. Takao Yamaguchi, “The isometry groups of manifolds of nonpositive curvature with finite volume,”Math. Z.,189, No. 2, 185–192 (1985).

    Google Scholar 

  382. Kazunari Yamauchi, “On infinitesimal projective transformations,”Hokkaido Math. J.,3, No. 2, 262–270 (1974).

    Google Scholar 

  383. Kazunari Yamauchi, “On infinitesimal projective transformations satisfying certain conditions,”Hokkaido Math. J.,7, No. 1, 74–77 (1978).

    Google Scholar 

  384. Kazunari Yamauchi, “On infinitesimal projective transformations of a Riemannian manifold with constant scalar curvature,”Hokkaido Math. J.,8, No. 2, 167–175 (1979).

    Google Scholar 

  385. Kazunari Yamauchi, “Infinitesimal projective and conformai transformations in a tangent bundle,”Sci. Repts. Kagoshima Univ., No. 32, 47–58 (1983).

    Google Scholar 

  386. Kazunari Yamauchi, “On infinitesimal projective transformations and infinitesimal conformai transformations in tangent bundles of Riemannian manifolds,”Sci. Repts. Kagoshima Univ., No. 36, 21–33 (1987).

    Google Scholar 

  387. Kentaro Yano, “Concircular geometry, I–IV,”Proc. Acad. Japan,16, 195–200, 354–360, 442–448, 505–511 (1940).

    Google Scholar 

  388. Kentaro Yano, “Conformai transformations in Riemannian manifolds,”Ber. Math. Forschungsinst. Oberwohlfach, No. 4, 339–351 (1971).

    Google Scholar 

  389. Kentaro Yano, “Notes on isometries,”Colloq. Math.,26, 1–7 (1972).

    Google Scholar 

  390. Kentaro Yano and Hitosi Hiramatu, “Riemannian manifolds admitting an infinitesimal conformai transformation,”J. Diff. Geom.,10, No. 1, 23–38 (1975).

    Google Scholar 

  391. Kentaro Yano and Hitosi Hiramatu, “On conformal changes of Riemannian metrics,”Kodai Math. Semin. Repts.,27, No. 1–2, 19–41 (1976).

    Google Scholar 

  392. Kentaro Yano and Hitosi Hiramatu, “Isometry of Riemannian manifolds to spheres,”J. Diff. Geom.,12, No. 3, 443–460 (1977).

    Google Scholar 

  393. Makato Yawata, “On the affine Killing vectors in the tangent bundles,”Rept. Chiba Inst. Technol., No. 29, 29–33 (1984).

    Google Scholar 

  394. Ichiro Yokoto, “Affine Killing vectors in the tangent bundles,”Kodai Math. J.,4, No. 3, 383–398 (1981).

    Google Scholar 

  395. Shinsuke Yorozu, “Killing vector fields on noncompact Riemannian manifolds with boundary,”Kodai Math. J.,5, No. 3, 426–433 (1982).

    Google Scholar 

  396. Shinsuke Yorozu, “Killing vector fields on complete Riemannian manifolds,”Proc. Amer. Math. Soc.,84, No. 1, 115–120 (1982).

    Google Scholar 

  397. Shinsuke Yorozu, “Affine and projective vector fields on complete non-compact Riemannian manifolds,”Yokohama Math. J.,31, No. 1–2, 41–46 (1983).

    Google Scholar 

  398. Shinsuke Yorozu, “Conformai and Killing vector fields on complete noncompact Riemannian manifolds,” in:Geom., Geod. and Relat. Top. Proc. Symp., Tokyo, Nov. 29–Dec. 3, 1982, Amsterdam, Tokyo (1984), pp. 459–472.

  399. Shinsuke Yorozu, “The non-existence of Killing fields,”Tôhoku Math.,36, No. 1, 99–105 (1984).

    Google Scholar 

  400. Yashiro Yoshimatsu, “On a theorem of Alekseevskii concerning conformai transformations,”J. Math. Soc. Jap.,28, No. 2, 278–289 (1976).

    Google Scholar 

Download references

Authors

Additional information

Translated fromItogi Nauki i Tekhniki, Seriya Problemy Geometrii, Vol. 22, 1990, pp. 97–165.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aminova, A.V. Groups of transformations of Riemannian manifolds. J Math Sci 55, 1996–2041 (1991). https://doi.org/10.1007/BF01095673

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01095673

Keywords

Navigation