Skip to main content
Log in

Percolation theory and some applications

  • Published:
Journal of Soviet Mathematics Aims and scope Submit manuscript

Abstract

The goal of the survey is to present mathematically rigorous results obtained in the recent years in the new mathematical discipline: percolation theory, which is on the border between the theory of random fields, stochastic geometry, and mathematical physics. Here not only classical percolation schemes are considered (bond and site problems on lattices) but also various generalizations that arose in connection with actual physical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. R. P. Braginskii, B. V. Gnedenko, S. A. Molchanov, I. B. Peshkov, and K. A. Rybnikov, “Mathematical models of aging of polymer insulation materials,” Dokl. Akad. Nauk SSSR,268, No. 2, 281–284 (1983).

    Google Scholar 

  2. A. O. Golosov, S. A. Molchanov, and A. Ya. Reznikova, “Continuous percolation models in fracture theory,” Vychisl. Seismol.,20 (1986).

  3. U. Grenander and G. Szego, Toeplitz Forms and Their Applications, Univ. of California Press, Los Angeles (1958).

    Google Scholar 

  4. P. J. de Jean, Scaling Ideas in the Physics of Polymers [Russian translation], Mir, Moscow (1982).

    Google Scholar 

  5. S. N. Zhurkov, V. S. Kuksenko, V. A. Petrov, et al., “To the question of forecasting fracture of rocks,” Izv. Akad. Nauk SSSR, Ser. Fiz. Zemli, No. 6, 118 (1977).

    Google Scholar 

  6. S. N. Zhurkov and V. S. Kuksenko, “Formation of submicroscopical cracks in polymers under load,” Fiz. Tverd. Tela, No. 11, 296 (1969).

    Google Scholar 

  7. Ya. B. Zel'dovich, “Percolation properties of a two-dimensional random magnetic field,” Pis'ma Zh. Éksp. Teor. Fiz.,38, No. 2, 51–54 (1983).

    Google Scholar 

  8. S. A. Zuev and A. F. Sidorenko, “Continuous models of percolation theory. I,” Teor. Mat. Fiz.,62, No. 1, 76–86 (1985).

    Google Scholar 

  9. S. A. Zuev and A. F. Sidorenko, “Continuous models of percolation theory. II,” Teor. Mat. Fiz.,62, No. 2, 253–262 (1985).

    Google Scholar 

  10. M. A. Krasnosel'skii, Positive Solutions of Operator Equations [in Russian], Fizmatgiz, Moscow (1962).

    Google Scholar 

  11. V. A. Malyshev and R. A. Minlos, Gibbs Random Fields [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  12. G. Matheron, Random Sets and Integral Geometry, Wiley, New York (1975).

    Google Scholar 

  13. M. V. Men'shikov, “Estimates of percolation thresholds for lattices in Rn,” Dokl. Akad. Nauk SSSR,284, No. 1, 36–39 (1985).

    Google Scholar 

  14. M. V. Men'shikov, “Coincidence of critical points in percolation problems,” Dokl. Akad. Nauk SSSR (1986).

  15. R. A. Minlos and P. V. Khrapov, “On percolation in a finite strip for continuous systems,” Vestn. Mosk. Univ., Ser. I Mat. Mekh., No. 1, 56–59 (1985).

    Google Scholar 

  16. L. G. Mityushin, “On some multidimensional systems of automata related to percolation problems,” Probl. Peredachi Inf.,11, No. 3, 101–103 (1975).

    Google Scholar 

  17. S. A. Molchanov, V. F. Pisarenko, and A. Ya. Reznikova, “On a percolation approach in fracture theory,” Vychisl. Seismol.,19 (1985).

  18. S. A. Molchanov and A. K. Stepanov, “V. A. Malyshev's estimate and its applications,” in: Random Processes in Fields [in Russian], Moscow State Univ. (1979), pp. 39–48.

  19. S. A. Molchanov and A. K. Stepanov, “Percolation of random fields. I,” Teor. Mat. Fiz.,55, No. 2, 246–256 (1983).

    Google Scholar 

  20. S. A. Molchanov and A. K. Stepanov, “Percolation of random fields. II,” Teor. Mat. Fiz.,55, No. 3, 419–430 (1983).

    Google Scholar 

  21. S. A. Molchanov and A. K. Stepanov, “Percolation of random fields. III,” Teor. Mat. Fiz.,65, No. 3, 371–379 (1985).

    Google Scholar 

  22. V. A. Petrov, “Foundations of kinetic fracture theory and fracture forecasting,” in: Physical Foundations of Forecasting Rock Fracture [in Russian], Nauka, Moscow (1974), p. 312.

    Google Scholar 

  23. V. I. Piterbarg, “On percolation of Gaussian fields,” in: Fourth International Vilnius Conference on Probability Theory and Mathematical Statistics, Abstracts of Reports [in Russian], Vol. 3, Vilnius (1985), pp. 204–206.

  24. M. A. Sadovskii, “On models of a geophysical environment and seismic process,” in: Forecast of Earthquakes [in Russian], Vol. 4, Donish., Dushanbe-Moscow (1983–1984), p. 268.

  25. B. A. Sevastyanov, Branching Processes [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  26. P. V. Khrapov, “On percolation in finite strip,” Vestn. Mosk. Univ., Ser. I Mat. Mekh., No. 4, 10–13 (1985).

    Google Scholar 

  27. T. L. Chelidze and Yu. M. Kolesnikov, “Modeling and forecasting fracture process within the framework of percolation theory,” Izv. Akad. Nauk SSSR, Ser. Fiz. Zemli, No. 5, 24–34 (1983).

    Google Scholar 

  28. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  29. A. L. Éfros, Physics and Geometry of Disorder [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  30. M. Aizenman, F. Delyon, and B. Souillard, “Lower bounds on the cluster size distribution,” J. Statist. Phys.,23, No. 3, 267–280 (1980).

    Google Scholar 

  31. M. Aizenman and C. M. Newman, “Tree graph inequality and critical behavior in percolation models,” J. Statist. Phys.,36, No. 1–2, 103–143 (1984).

    Google Scholar 

  32. C. J. Allegre, J. L. LeMouel, and A. Provost, “Scaling rules in rock fracture and possible implications for earthquake prediction,” Nature,297, No. 5861, 47–49 (1982).

    Google Scholar 

  33. J. Van den Berg, “Disjoint occurrences of events: Results and conjectures,” Contemporary Math.,41, 357–361 (1985).

    Google Scholar 

  34. J. Van den Berg and M. Keane, “On the continuity of the percolation probability function,” Contemporary Math.,26, 61–65 (1984).

    Google Scholar 

  35. J. Van den Berg and H. Kesten, “Inequalities with applications to percolations and reliability,” J. Appl. Probab.,22, No. 3, 556–569 (1985).

    Google Scholar 

  36. M. Campanino and L. Russo, “An upper bound on the critical percolations probability for the three-dimensional cubic lattice,” Ann. Probab.,13, No. 2, 479–491 (1985).

    Google Scholar 

  37. T. L. Chelidze, “Percolation and fracture. Fears and Planet,” Interiors,28, 93–101 (1982).

    Google Scholar 

  38. R. Durrett, “Some general results concerning the critical exponents of percolation processes,” Z. Wahrsch. Verw. Gebiete,69, 421–437 (1985).

    Google Scholar 

  39. R. Durrett and B. Nguen, “Thermodynamic inequalities for percolation,” Commun. Math. Phys.,99, No. 2, 253–269 (1985).

    Google Scholar 

  40. G. M. Fortuin, P. W. Kasteleyn, and J. Ginibre, “Correlation inequalities on some partially ordered sets,” Commun. Math. Phys.,22, No. 2, 89–103 (1971).

    Google Scholar 

  41. J. M. Hammersley, “Percolation processes: lower bounds for the critical probability,” Ann. Math. Statist.,28, No. 3, 790–795 (1957).

    Google Scholar 

  42. T. E. Harris, “A lower bound for the critical probability in a certain percolation process,” Proc. Cambridge Philos. Soc.,56, No. 1, 13–20 (1960).

    Google Scholar 

  43. Y. Higuchi, “Coexistence of the infinite (*) clusters. A remark on the square lattice site percolation,” Z. Wahrsch. Verw. Gebiete,61, No. 1, 75–81 (1982).

    Google Scholar 

  44. H. Kesten, “The critical probability of bond percolation on the square lattice equal 1/2,” Commun. Math. Phys.,74, No. 1, 41–54 (1980).

    Google Scholar 

  45. H. Kesten, Percolation Theory for Mathematicians, Birkhäuser, Boston e.a. (1982).

    Google Scholar 

  46. H. Kesten, “First-passage percolation and a higher dimensional generalization,” Contemporary Math.,41, 235–251 (1985).

    Google Scholar 

  47. C. M. Newman and L. S. Schulman, “Number and density of percolation clusters,” J. Phys. A.,14, 1735–1743 (1981).

    Google Scholar 

  48. C. M. Newman and L. S. Schulman, “Infinite clusters in percolation models,” J. Statist. Phys.,26, No. 3, 613–628 (1981).

    Google Scholar 

  49. G. Ord and S. G. Whittington, “Lattice decorations and pseudocontinuum percolation,” J. Phys. A.,13, 1307–1310 (1980).

    Google Scholar 

  50. L. Russo, “On the critical percolation probabilities,” Z. Wahrsch. Verw. Gebiete,56, 229–237 (1981).

    Google Scholar 

  51. M. F. Sykes and J. W. Essam, “Exact critical percolation probabilities for site and bond problems in two dimensions,” J. Math. Phys.,5, 1117–1127 (1964).

    Google Scholar 

  52. V. K. Shante and S. Kirkpatric, “An introduction to percolation theory,” Adv. Phys.,20 (1970).

  53. R. T. Smythe and J. C. Wierman, “First-passage percolation on the square lattice,” Lect. Notes Math.,671, Springer (1978).

  54. B. Toth, “A lower bound for the critical probability of the square lattice site percolation,” Z. Wahrsch. Verw. Gebiete,69, 19–22 (1985).

    Google Scholar 

  55. J. C. Wierman, “Bond percolation on honeycomb and triangular lattices,” Adv. Appl. Probab.,13, 298–313 (1981).

    Google Scholar 

  56. J. C. Wierman, “Counterexamples in percolation: the site percolation critical probabilities pH and pT are unequal for a class of fully triangulated graphs,” J. Phys. A.,17, 637–646 (1984).

    Google Scholar 

  57. J. C. Wierman, “A bond-percolation critical probability determination based on the startriangle transformation,” J. Phys. A.,17, 1525–1530 (1984).

    Google Scholar 

  58. J. C. Wierman, “Duality for directed site percolations,” Contemporary Math.,41, 363–380 (1985).

    Google Scholar 

Download references

Authors

Additional information

Translated from Itogi Nauki i Tekhniki, Teoriya Veroyatnostei, Matematicheskaya Statistika, Teoreticheskaya Kibernetika, Vol. 24, pp. 53–110, 1986.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Men'shikov, M.V., Molchanov, S.A. & Sidorenko, A.F. Percolation theory and some applications. J Math Sci 42, 1766–1810 (1988). https://doi.org/10.1007/BF01095508

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01095508

Keywords

Navigation