Skip to main content
Log in

The relationship between localization of Na+, K+-ATPase and cellular fine structure in the rat parotid gland

  • Papers
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

A method for the ultrastructural localization of the Na+-pump enzyme, Na+, K+-ATPase has been applied to the rat parotid gland. A ouabain-sensitive final reaction product, dependent on the presence of K+ and Mg2+, was found to be evenly distributed along the basal and basolateral plasma membranes of acinar and striated duct cells. In both cases, it was localized predominantly in the cytoplasm of the extensive foldings of these membranes.

It is concluded that the reaction product meets the criteria for valid localization of this enzyme and that potential Na+-pump sites have been demonstrated. This study supports previous findings in salivary glands and contributes to an increasing body of evidence that contraluminal Na+-pumps are common to both reabsorbing and secreting epithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, J. C. &Schwartz, A. (1969) A possible biochemical explanation for the insensitivity of the rat to cardiac glycosides.J. Pharmac. exp. Ther. 168, 42–6.

    Google Scholar 

  • Augustus, J. (1976) Evidence for electrogenic sodium pumping in the ductal epithelium of rabbit salivary gland and its relationship with (Na+, K+)-ATPase.Biochim. Biophys. Acta 419, 63–75.

    Google Scholar 

  • Bogart, B. I. (1968) The fine structural localization of alkaline and acid phosphatase activity in the rat submandibular gland.J. Histochem. Cytochem. 16, 572–81.

    Google Scholar 

  • Bogart, B. I. (1975) Secretory dynamics of the rat submandibular gland. An ultrastructural and cytochemical study of the isoproterenol-induced secretory cycle.J. Ultrastruct. Res. 52, 139–55.

    Google Scholar 

  • Bundgaard, M., Møller, M. &Poulsen, J. H. (1977) Localization of sodium pump sites in cat salivary glands.J. Physiol., Lond. 273, 339–53.

    Google Scholar 

  • Ernst, S. A. (1972a) Transport adenosine triphosphatase cytochemistry. I. Biochemical characterization of a cytochemical medium for the ultrastructural localization of ouabain-sensitive, potassium dependent phosphatase activity in the avian salt gland.J. Histochem. Cytochem. 20, 13–22.

    Google Scholar 

  • Ernst, S. A. (1972b) Transport adenosine triphosphatase cytochemistry. II. Cytochemistry localization of ouabain-sensitive potassium dependent phosphatase activity in the secretory epithelium of the avian salt gland.J. Histochem. Cytochem. 20, 23–38.

    Google Scholar 

  • Ernst, S. A. (1975) Transport ATPase cytochemistry: ultrastructural localization of potassium-dependent and potassium-independent phosphatase activities in rat kidney cortex.J. Cell Biol. 66, 586–608.

    Google Scholar 

  • Ernst, S. A. &Hootman, S. R. (1981) Microscopical methods for the localization of Na+, K+-ATPase.Histochem. J. 13, 397–418.

    Google Scholar 

  • Ernst, S. A. &Mills, J. W. (1977) Basolateral plasma membrane localization of ouabain-sensitive sodium transport sites in the secretory epithelium of the avian salt gland.J. Cell Biol. 75, 74–94.

    Google Scholar 

  • Ernst, S. A. &Mills, J. W. (1980) Autoradiographic localization of tritiated ouabain-sensitive sodium pump sites in ion transporting epithelia.J. Histochem. Cytochem. 28, 72–7.

    Google Scholar 

  • Ernst, S. A., Riddle, C. V. &Karnaky, K. J. (1980) Relationship between localization of Na+, K+-ATPase, cellular fine structure, and reabsorptive and secretory electrolyte transport. InCurrent Topics in Membranes and Transport (edited byBronner, F. andKleinzeller, A.), Vol. 13, pp. 355–85. New York: Academic Press.

    Google Scholar 

  • Firth, J. A. (1974) Problems of specificity in the use of a strontium capture technique for the cytochemical localization of ouabain-sensitive, potassium-dependent phosphatase in mammalian renal tubules.J. Histochem. Cytochem. 22, 1163–68.

    Google Scholar 

  • Garrett, J. R. &Harrison, J. D. (1970) Alkaline phosphatase and adenosine triphosphatase histochemical reactions in the salivary glands of cat, dog and man, with particular reference to the myoepithelial cells.Histochemie. 24, 214–19.

    Google Scholar 

  • Garret, J. R. &Parsons, P. A. (1973) Alkaline phosphatase and myoepithelial cells in the parotid gland of the rat.Histochem. J. 5, 461–71.

    Google Scholar 

  • Guth, L. &Albers, R. W. (1974) Histochemical demonstration of (Na+, K+)-activated adenosine triphosphatase.J. Histochem. Cytochem. 22, 320–26.

    Google Scholar 

  • Kida, T., Ueha, T., Nemota, A. &Hosoi, K. (1980) Histochemical localization of Na+, K+-ATPase in the rat submandibular gland.Bull. Josai. Dent. Univ. 9, 155–8.

    Google Scholar 

  • Kyte, J. (1976) Immunoferritin determination of the distribution of (Na+, K+)-ATPase over the plasma membranes of renal convoluted tubules. II. Proximal segment.J. Cell Biol. 68, 304–18.

    Google Scholar 

  • Leeson, C. R. (1967) Structure of salivary glands. InHandbook of Physiology (edited byCoye, C. F.), pp. 463–95. Washington: American Physiological Society.

    Google Scholar 

  • Martinez, J. R., Holzgreve, H. &Frick, A. (1966) Micropuncture study of submaxillary glands of adult rats.Pflügers Arch. ges. Physiol. 290, 124–33.

    Google Scholar 

  • Mayahara, H., Fujimoto, K., Ando, T. &Ogawa, K. (1980) A new one-step method for the cytochemical localization of ouabain-sensitive, potassium-dependentp-nitrophenylphosphatase activity.Histochemistry 67, 125–38.

    Google Scholar 

  • Petersen, O. H. (1971a) Formation of saliva and potassium transport in the perfused cat submandibular gland.J. Physiol., Lond. 216, 129–42.

    Google Scholar 

  • Robinson, J. D. &Flashner, M. S. (1979) The (Na+, K+)-activated ATPase enzymatic and transport properties.Biochem. Biophys. Acta 549, 145–76.

    Google Scholar 

  • Schneyer, L. H. &Schneyer, C. A. (1971) Responses of perfused main duct of rat submaxillary gland to pharmacological agents. InOral Physiology (edited byEmmelin, N. andZotterman, Y.) pp. 61–73. Oxford: Pergamon Press.

    Google Scholar 

  • Schwartz, A., Lasetter, A. H. &Kraintz, L. (1963) An enzymatic basis for active cation transport in the parotid gland.J. Cell Physiol. 62, 193–205.

    Google Scholar 

  • Schwartz, A. &Matsui, H. (1967) An enzymatic mechanism for active cation transport. InSecretory Mechanisms of Salivary Glands (edited bySchneyer, L. H. andSchneyer, C. A.) 75–97. New York: Academic Press.

    Google Scholar 

  • Schwartz, A. &Moore, C. A. (1968) Highly active Na+, K+-ATPase in rat submaxillary gland bearing on salivary secretion.Am. J. Physiol. 214, 1163–67.

    Google Scholar 

  • Scott, B. C. &Pease, D. C. (1959) Electron microscopy of the salivary and lacrimal glands of the rat.Am. J. Anat. 104, 115–61.

    Google Scholar 

  • Shackleford, J. M. &Schneyer, L. H. (1971) Ultrastructural aspects of main excretory duct of rat submandibular gland.Anat. Rec. 169, 679–96.

    Google Scholar 

  • Takiguchi, H. (1974) Potassium dependent phosphatase in mitochondria of rat submandibular gland.J. dent. Res. 53, 1505.

    Google Scholar 

  • Thaysen, J. H., Thorn, N. A. &Schwartz, I. L. (1954) Excretion of sodium, potassium, chloride and carbon dioxide in human parotid saliva.Am. J. Physiol. 178, 155–9.

    Google Scholar 

  • Yoshiki, S., Umeda, T. &Kurahashi, Y. (1972) An effective reactivation of alkaline phosphatase in hard tissues completely decalcified for light and electron microscopy.Histochemie 29, 296–304.

    Google Scholar 

  • Young, J. A. &Van Lennep, E. W. (1978)The Morphology of Salivary Glands. New York, London: Academic Press.

    Google Scholar 

  • Young, J. A. &Van Lennep, E. W. (1979) Transport in salivary and salt glands. InMembrane Transport in Biology, Vol. IV B, Transport Organs (edited byGiebisch, G., Tostesan, D. C. andUssing, H.) Chapter 12. New York: Springer-Verlag.

    Google Scholar 

  • Young, J. A. &Martin, C. J. (1971a) The effect of sympatho and parasympathomimetic drug on the electrocyte concentrations of primary and final saliva of the rat submaxillary gland.Pflügers Arch. ges. Physiol. 327, 285–302.

    Google Scholar 

  • Young, J. A. &Martin, C. J. (1971b) Electrocyte transport in the excurrent duct system of the submaxillary gland. InOral Physiology (edited byEmmelin, N. andZotterman, Y.), pp. 99–113. Oxford: Pergamon Press.

    Google Scholar 

  • Young, J. A., Fromter, E., Schogel, E. &Hamann, K. F. (1967a) A microperfusion investigation of sodium resorption and potassium secretion by the main excretory duct of the rat submaxillary gland.Pflügers Arch. ges. Physiol. 295, 157–72.

    Google Scholar 

  • Young, J. A., Fromter, E., Schogel, E. &Hamann, K. F. (1967b). Micropuncture and perfusion studies of fluid and electrocyte transport in rat submaxillary glands. InSecretory Mechanisms of Salivary Glands (edited bySchneyer, L. H. andSchneyer, C. A.), pp. 11–29. New York, London: Academic Press.

    Google Scholar 

  • Young, J. A., Martin, C. J., Asz, M. &Weber, F. D. (1970) A microperfusion investigation of bicarbonate secretion by the rat submaxillary gland.Pflügers Arch. ges. Physiol. 319, 185–99.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Speight, P.M., Chisholm, D.M. The relationship between localization of Na+, K+-ATPase and cellular fine structure in the rat parotid gland. Histochem J 16, 721–731 (1984). https://doi.org/10.1007/BF01095278

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01095278

Keywords

Navigation