Skip to main content
Log in

Histochemical and immunohistochemical localization of hexokinase isoenzymes in rat kidney

  • Papers
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

Histochemical and immunohistochemical staining techniques have been used to investigate the localization of hexokinase isoenzymes within rat kidney tissue. Hexokinase type I was shown to be the major isoenzyme present. It was located mainly in the thin and thick limbs of loops of Henle, in distal tubules and in the transitional or dark cells in the initial portions of collecting ducts. The smooth muscle cells of arteries and arterioles, peripheral nerves and the transitional epithelial cells lining the renal pyramid also contained large amounts of the isoenzyme while smaller quantities were present in glomeruli and in collecting tubules near the papillary tip. The distribution pattern obtained in tubular epithelia agrees well with that demonstrated in earlier microdissection studies. It is also consistent with the suggestion that glycolysis provides the majority of the energy fuelling the sodium transport mechanisms which form such an essential feature of the countercurrent urine concentration system present within the renal medulla.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, M. B., Brocklebank, J. L. &Walker, D. G. (1980) Apparent ‘glucokinase’ activity in non-hepatic tissues due toN-acetyl-d-glucosamine kinase.Biochim. biophys. Acta 614, 357–66.

    Google Scholar 

  • Allen, M. B. &Walker, D. G. (1980) The isolation and preliminary characterization ofN-acetyl-d-glucosamine kinase from rat kidney and liver.Biochem. J. 185, 565–75.

    Google Scholar 

  • Ballatori, N. &Cohen, J. J. (1981) Intracellular distribution of hexokinase in the tissue zones of rat kidney.Biochim. biophys. Acta. 657, 448–56.

    Google Scholar 

  • Boorsma, D. M. &Streefkerk, J. G. (1979) Periodate or glutaraldehyde for preparing peroxidase conjugates?J. Immunol. Methods 30, 245–55.

    Google Scholar 

  • Brannan, T. S., Corder, C. N. &Rizk, M. (1975) Histochemical measurements of rat kidney hexokinase.Proc. Soc. Exp. Biol. Med. 148, 714–9.

    Google Scholar 

  • Briggs, F. N., Chernick, S. &Chaikoff, I. L. (1949) The metabolism of arterial tissue. 1. Respiration of rat thoracic aorta.J. biol. Chem. 179, 103–11.

    Google Scholar 

  • Brown, G. G. (1978)An Introduction to Histotechnology, p. 344. New York, London: Appleton-Century-Crofts.

    Google Scholar 

  • Cohen, J. J. (1979) Is the function of the renal papilla coupled exclusively to an anaerobic pattern of metabolism?Am. J. Physiol. 236, F423-F433.

    Google Scholar 

  • Colowick, S. P. (1973) The hexokinases. InThe Enzymes (edited byBoyer, P. D.), Vol. 9, Part B, 3rd edn. pp. 1–48. New York: Academic Press.

    Google Scholar 

  • Copenhaver, W. M. Kelly, D. E. &Wood, R. L. (1978)Bailey's Textbook of Histology, 7th edn. Baltimore: Waverley Press.

    Google Scholar 

  • Grossbard, L. &Schimke, R. T. (1966) Multiple hexokinases of rat tissues. Puritication and comparison of soluble forms.J. biol. Chem. 241, 3546–60.

    Google Scholar 

  • Guder, W. G. &Schmidt, U. (1976) Substrate and oxygen dependence of renal metabolism.Kidney. Int. 10, S32-S38.

    Google Scholar 

  • Gyorgy, P., Keller, W. &Brehme, T. (1928) Nierenstoff wechsel und Nierentwicklung.Biochem. Z. 200, 356–66.

    Google Scholar 

  • Kao-Jen, J. &Wilson, J. E. (1980) Localisation of hexokinase in neural tissue. Electron microscopic studies of rat cerebellar cortex.J. Neurochemistry 35, 667–78.

    Google Scholar 

  • Katzen, H. M. &Schimke, R. T. (1965) Multiple forms of hexokinase in the rat: tissue distribution, age dependency and properties.Proc. Soc. Natn. Acad. Sci. USA 54, 1218–25.

    Google Scholar 

  • Katzen, H. M., Soderman, D. D. &Cirillo, V. J. (1968) Tissue distribution and physiological significance of multiple forms of hexokinase.Ann. NY Acad. Sci 151, 351–8.

    Google Scholar 

  • Kirk, J. E., Effersoe, P. G. &Chiang, S. P. (1954) The rate of respiration and glycolysis by human and dog aortic tissue.J. Gerontol. 9, 10–35.

    Google Scholar 

  • Kosan, R. L. &Burton, A. (1966) Oxygen consumption of arterial smooth muscle as a function of active tone and passive stretch.Circ. Res. 27, 79–88.

    Google Scholar 

  • Lawrence, G. M. & Trayer, I. P. (1984) The use of immunological methods to investigate evolutionary relationships between hexokinase isoenzymes.Biochem. Soc. Trans. (in press).

  • Lawrence, G. M., Walker, D. G. &Trayer, I. P. (1983) Antigenic cross-reactivities between mammalian hexokinases.Biochim. biophys. Acta 743, 219–25.

    Google Scholar 

  • Lee, J. B. &Vater, H. M. (1969) Effect of oxygen on glucose metabolism in rabbit kidney cortex and medulla.Am. J. Physiol. 217, 1464–71.

    Google Scholar 

  • Lee, J. B., Vance, V. K. &Cahill, G. F. (1962) Metabolism of C14-labelled substrates by rabbit kidney cortex and medulla.Am. J. Physiol. 203, 27–36.

    Google Scholar 

  • Lowry, O. H., Passonneau, J. V., Hasselberger, F. X. &Schulz, D. W. (1964) Effect of ischemia on known substrates and co-factors of the glycolytic pathway in brain.J. Biol. Chem. 239, 18–30.

    Google Scholar 

  • Lundholme, L., Andersson, R. G. G., Arnqvist, H. J. &Mohme-Lundholm, E. (1977) Glycolysis and glycogenolysis in smooth muscle. InThe Biochemistry of Smooth Muscle (edited byStephens, N. L.), pp. 159–207. Baltimore, London, Tokyo: University Park Press.

    Google Scholar 

  • Sacktor, B., Wilson, J. E. &Tiekert, C. G. (1966) Regulation of glycolysis in brain,in situ, during convulsions.J. biol. Chem. 241, 5071–5.

    Google Scholar 

  • Schmidt, U., Marosvari, I. &Dubach, U. C. (1975) Renal metabolism of glucose: anatomical sites of hexokinase activity in rat nephron.FEBS Lett. 53, 26–8.

    Google Scholar 

  • Vandewalle, A., Wirthensohn, G., Heidrich, H.-G. &Guder, W. G. (1981) Distribution of hexokinase and phosphoenol pyruvate carboxykinase along the rabbit nephron.Am. J. Physiol. 240, F492-F500.

    Google Scholar 

  • Waldman, R. H. &Burch, H. B. (1963) A rapid method for the study of enzyme distribution in rat kidney.Am. J. Physiol. 204, 749–52.

    Google Scholar 

  • Widemann, M. J. &Krebs, H. A. (1969) The fuel of respiration of rat kidney cortex.Biochem. J. 112, 149–66.

    Google Scholar 

  • Weinstein, S. W. &Szyjewicz, J. (1974) Individual nephron function and renal oxygen consumption in the rat.Am. J. Physiol. 227, 171–7.

    Google Scholar 

  • Wilkin, G. P. &Wilson, J. E. (1977) Localisation of hexokinase in neural tissue: light microscopic studies with immunofluoroescence and histochemical procedures.J. Neurochemistry 29, 1039–51.

    Google Scholar 

  • Wilson, J. E. (1980) Brain hexokinase: the prototype ambiquitous enzyme. InCurrent Topics in Cellular Regulation, Vol. 16 (edited byHorecker, B. L. andStadtman, E. R.), pp. 1–54. New York: Academic Press.

    Google Scholar 

  • Wilson, M. B. &Nakane, P. K. (1978) InImmunofluorescence and Related Staining Techniques (edited byKnapp, W., Holubar, K. andWick, G.), p. 215. Amsterdam: Elsevier/North Holland Biochemical Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawrence, G.M., Trayer, I.P. Histochemical and immunohistochemical localization of hexokinase isoenzymes in rat kidney. Histochem J 16, 697–708 (1984). https://doi.org/10.1007/BF01095276

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01095276

Keywords

Navigation