Advertisement

Ukrainian Mathematical Journal

, Volume 30, Issue 5, pp 508–511 | Cite as

Green's function for general inhomogeneous boundary-value problems for systems that are elliptic in the sense of Douglis-Nirenberg

  • I. A. Kovalenko
  • Ya. A. Roitberg
  • Z. G. Sheftel'
Brief Communications
  • 29 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. A. Solonnikov, “On Green's matrices for elliptic boundary problems. 1,” Tr. Mat. Inst. Akad. Nauk SSSR,110, 109–145 (1970).Google Scholar
  2. 2.
    V. A. Solonnikov, “On Green's matrices for elliptic boundary problems. 2,” Tr. Mat. Inst. Akad. Nauk SSSR,116, 181–216 (1971).Google Scholar
  3. 3.
    Yu. M. Berezanskii and Ya. A. Roitberg, “A theorem on homeomorphisms and Green's functions for general elliptic boundary problems,” Ukr. Mat. Zh.,19, No. 5, 3–32 (1967).Google Scholar
  4. 4.
    I. A. Kovalenko and Ya. A. Roitberg, “On Green's functions for general elliptic boundary problems with pseudodifferential boundary conditions,” Ukr. Mat. Zh.,23, No. 6, 772–777 (1971).Google Scholar
  5. 5.
    I. A. Kovalenko and Ya. A. Roitberg, “On boundary values of generalized solutions of elliptic systems,” Ukr. Mat. Zh.,27, No. 3, 308–319 (1975).Google Scholar
  6. 6.
    Ya. A. Roitberg, “A theorem on complete collections of isomorphisms for systems, elliptic in the sense of Douglis-Nirenberg,” Ukr. Mat. Zh.,27, No. 4, 544–553 (1975).Google Scholar
  7. 7.
    E. Hille and R. S. Phillips, Functional Analysis and Semigroups, Amer. Math. Soc. (1974).Google Scholar
  8. 8.
    Yu. M. Berezanskii, Expansions in Eigenfunctions of Selfadjoint Operators, Amer. Math. Soc. (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • I. A. Kovalenko
    • 1
  • Ya. A. Roitberg
    • 1
  • Z. G. Sheftel'
    • 1
  1. 1.Chernigov Pedagogic InstituteUSSR

Personalised recommendations