Ukrainian Mathematical Journal

, Volume 30, Issue 5, pp 500–504 | Cite as

A condition of bounded variation for stochastic categories

  • G. P. Butsan
Brief Communications


Bounded Variation Stochastic Category 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    G. P. Butsan, “Multiplicative parametric semigroups,” Kibernetika, No. 3, 38–43 (1978).Google Scholar
  2. 2.
    G. P. Butsan, Stochastic Semigroups [in Russian], Naukova Dumka, Kiev (1977).Google Scholar
  3. 3.
    G. P. Butsan, “Some properties of s-semigroups,” The Theory of Probability and Mathematical Statistics, No. 15, 13–21 (1976).Google Scholar
  4. 4.
    G. P. Butsan, “Remarks about the book ‘Stochastic Semigroups’,” Ukr. Mat. Zh.,29, No. 6, 796–800 (1977).Google Scholar
  5. 5.
    H. Bass, Algebraic K-Theory, W. A. Benjamin, New York (1968).Google Scholar
  6. 6.
    M. A. Naimark, Normed Rings [Russian translation], Nauka, Moscow (1968).Google Scholar
  7. 7.
    N. Dunford and J. T. Schwartz, Linear Operators. General Theory, Vol. I, Wiley (1958).Google Scholar
  8. 8.
    A. V. Skorokhod, “Operator martingales and stochastic semigroups,” in: The Theory of Random Processes, No. 4, 86–94 (1976).Google Scholar
  9. 9.
    A. V. Skorokhod, “Random operators in a Hilbert space,” Proceedings of the Third Japan-USSR Symposium on Probability Theory, Lecture Notes in Mathematics, Springer-Verlag,550, 562–592 (1976).Google Scholar
  10. 10.
    H. P. McKean, Stochastic Integrals, Academic Press (1959).Google Scholar
  11. 11.
    P. A. Meyer, “Integrales stochastique I et II,” Lecture Notes in Math., Springer-Verlag,39, 3–87 (1967).Google Scholar
  12. 12.
    M. Metivier, “Stochastic integral and vector-valued measures,” Progr. Amsterdam—London Statist.,2, 507–521 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • G. P. Butsan
    • 1
  1. 1.Institute of MathematicsAcademy of Sciences of the Ukrainian SSRUKraine

Personalised recommendations