Skip to main content
Log in

A model-based analysis of heat transport in electrolytic reactors

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Thermal behaviour and heat transport phenomena occurring in electrolytic reactors are analysed via the governing equations of appropriate models. Applications of the continuous-flow stirred tank electrochemical reactor (CSTER) and plug-flow electrochemical reactor (PFER) models to estimate temperature profiles in electrolysers are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a, b :

regression parameters for (ΔH w,T)

a s :

specific investment cost

A E :

electrode area

A j :

the area of thejth heat transfer surface

A s :

electrolyte surface area

b s :

specific cost of electric energy

c :

electrolyte concentration

C H :

specific cost of thermal energy

C i :

specific cost of thermal insulation

C k :

concentration of thekth ionic species

c 0 :

solvent concentration

C p :

specific heat of the electrolyte

c T :

total solution concentration

C T :

composite cost

d i :

insulation thickness

D :

electrolyte diffusivity (based on a thermodynamic driving force)

D/Dt :

substantive differential operator

F :

Faraday's constant

G :

mass flow rate of electrolyte

\(\bar H_k \) :

partial molar enthalpy of thekth ionic species

h s :

surface-to-air heat transfer coefficient

I :

electric current

i :

electric current density

k i :

thermal conductivity of insulation

L :

characteristic length

\(\bar m\) :

average rate of evaporation

M :

heat capacity of electrolyte mass in reactor

n k :

mole fraction of thekth component

N k :

substance flux of thekth ionic component

P :

pressure

P w :

vapour pressure of water at the evaporating surface

P :

vapour pressure of the ambient water vapour

q:

heat flux vector

Q L :

rate of heat losses

R e :

electrolyte resistance

R k :

rate of homogeneous production in chemical reaction of thekth ionic species, per unit are

S :

separation distance of electrolyser walls parallel to plug flow direction

S 1,S 2 :

dimensions of the horizontal section of a rectangular electrolyser

T :

temperature

T A :

ambient temperature

t :

time

U :

overall heat transfer coefficient;U j pertains to thejth heat transfer surface insulation volume

V i :

insulation volume

υk :

velocity of thekth ionic component

V:

velocity vector

w :

electrode area per unit reactor length

α 1 :

lumped parameter (U/Sϱc p)

α 2 :

lumped parameter (i 2m /ϱcp σm)

α 4 β 4 :

regression parameters for (σ,T)

β 1 :

lumped parameter (U/V x Sϱc p)

β 2 :

lumped parameter (l/V xϱc p)

β 3 :

lumped parameter (ΔH R/V x Sϱc p zF)

ΔH R :

heat of the overall electrolytic cell reaction

ΔH w :

latent heat of vapourization (of water);\(\Delta \hat H_w \) its estimated value by regression

ν:

dissociation number (number of ion moles produced by the dissociation of one mole of electrolyte)

νi :

ionic dissociation number (number of moles of thekth ionic species produced by the dissociation of one mole of electrolyte)

ϱ:

electrolyte density

σ:

electrolyte conductivity

σS :

Soret coefficient

τ:

PFER time constant

τ:

stress tensor

ωe :

mass fraction of the electrolyte

m:

average

L:

at exit site

S:

steady state

x:

along the principal direction of axial flow

References

  1. W. Kaplan, ‘Advanced Calculus’, Addison Wesley, Reading, Massachusetts (1952) Section 5-11.

    Google Scholar 

  2. J. S. Newman, ‘Electrochemical Systems’, Prentice-Hall, Englewood Cliffs, New Jersey (1973) Section 85.

    Google Scholar 

  3. T. Z. Fahidy,Appl. Math. Model. 4 (1980) 59.

    Google Scholar 

  4. T. Z. Fahidy, Proc. Symp. Electrochem. Proc. Plant Design (edited by R. C. Alkire, T. B. Beck and R. D. Varjian) Vol. 83, The Electrochemical Society, Pennington, NJ (1983) p. 164.

    Google Scholar 

  5. M. Abramowitz and I. A. Stegun, ‘Handbook of Mathematical Functions’, Dover Publications Inc., New York (1965) Chapter 25.

    Google Scholar 

  6. D. J. Pickett, ‘Electrochemical Reactor Design’ Elsevier, Holland (1977, 1979) Section 6.13.

    Google Scholar 

  7. L. M. K. Boelter, H. S. Gordon and J. R. Griffin,Industr. Eng. Chem. 38 (1946) 596.

    Google Scholar 

  8. T. Z. Fahidy, Extended Abstract No, 389, Spring Meeting of the Electrochemical Society, Minneapolis, Minnesota, 10–15 May, 1981.

  9. T. Z. Fahidy,J. Electrochem. Soc. 129 (1982) 953.

    Google Scholar 

  10. N. Ibl, Proc. Symp. Electrochem. Engrg., Institute of Chemical Engineers (Britain), Newcastle upon Tyne (1973) Vol. I. 1.3.

  11. F. D. Hamblin, ‘Abridged Thermodynamic and Thermochemical Tables (SI Units)’, Pergamon, Oxford (1971) Table 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fahidy, T.Z. A model-based analysis of heat transport in electrolytic reactors. J Appl Electrochem 16, 250–258 (1986). https://doi.org/10.1007/BF01093357

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01093357

Keywords

Navigation