Skip to main content
Log in

Matrix seminorms and related inequalities

  • Published:
Journal of Soviet Mathematics Aims and scope Submit manuscript

Abstract

One investigates estimates of the type ∥ABx∥⩽f(B)∥Ax∥, where A, B are matrices and x is a vector belonging to a certain subspace. One investigates the properties of the matrix seminorm f(B), in particular, its relation to the spectrum of the matrix B. For the case of a stochastic matrix B (which can be easily generalized to the case of a nonnegative matrix B) one derives estimates for f(B) which are convenient for practical computations (also on an electronic computer). One gives a numerical example illustrating the application of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. F. R. Gantmakher (Gantmacher), The Theory of Matrices, Chelsea, New York (1959).

    Google Scholar 

  2. F. L. Bauer, J. Stoer, and C. Witzgall, “Absolute and monotonic norms,” Numer. Math.,3, No. 4, 257–264 (1961).

    Google Scholar 

  3. A. I. Krysanov, L. T. Kuzin, and Yu. P. Letunov, “Certain asymptotic estimates for the convergence of discrete Markov chains,” Izv. Akad. Nauk SSSR, Tekh. Kibern., No.6, 143–150 (1971).

    Google Scholar 

  4. B. A. Sevast'yanov, Branching Processes [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  5. R. T. Rockafellar, Convex Analysis, Princeton Univ. Press (1970).

  6. M. Marcus and H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Allyn and Bacon, Boston (1964).

    Google Scholar 

  7. F. L. Bauer, “Positivity and norms,” Commun. ACM,18, No. 1, 9–13 (1975).

    Google Scholar 

  8. R. Bellman, Introduction to Matrix Analysis, McGraw-Hill, New York (1970).

    Google Scholar 

  9. P. V. Bromberg, Matrix Analysis of Discontinuous Control Systems, American Elsevier, New York (1969).

    Google Scholar 

  10. G. Odiard, “Un corollaire du theoreme de Perron-Frobenius,” Rev. Franc. Inform. Rech. Oper.,5, No. R-2, 124–129 (1971).

    Google Scholar 

  11. Fam Van At, “The reduction of an irreducible nonnegative matrix to a quasistochastic form by the method of similarity variation,” Zh. Vychisl. Mat. Mat. Fiz.,15, No. 5, 1106–1112 (1975).

    Google Scholar 

  12. E. Deutsch and Ch. Zenger, “Inclusion domains for the eigenvalues of stochastic matrices,” Numer. Math.,18, No. 2, 182–192 (1971).

    Google Scholar 

Download references

Authors

Additional information

Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR, Vol. 70, pp. 270–285, 1977.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolpakov, V.V. Matrix seminorms and related inequalities. J Math Sci 23, 2094–2106 (1983). https://doi.org/10.1007/BF01093289

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01093289

Keywords

Navigation