Advertisement

Qualitas Plantarum

, Volume 24, Issue 1–2, pp 199–218 | Cite as

Chemical constituents of Hypogymnia enteromorpha

  • Takayuki Shibamoto
  • Richard A. Bernhard
Article

Abstract

The lichenHypogymnia enteromorpha (Ach.) Nyl. was sequentially extracted by a solvent series that ranged from non-polar to highly polar liquids. The principal extracellular lichen products isolated from this species were thiophaninic acid, physodalic acid, physodic acid, atranorin, and ventosic acid. The carbohydrate D-arabitol was isolated from the more polar extracts. The isolated constituents were identified by means of mixed melting points, specific color tests, thin layer chromatographic Rf values, infrared spectroscopy, nuclear magnetic resonance spectroscopy, mass spectrometry, and elemental analysis. Quantitative estimates of the amounts of these lichen constituents present in the plant are presented. Three components, thiophaninic acid, ventosic acid, and D-arabitol are here reported for the first time to be constituents of this lichen.

Keywords

Nuclear Magnetic Resonance Infrared Spectroscopy Nuclear Magnetic Resonance Spectroscopy Magnetic Resonance Spectroscopy Chemical Constituent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

Die FlechteHypogymnia enteromorpha (Ach.) Nyl. wurde stufenweise mit mehreren Lösungsmitteln extrahiert, die in ihren Zusammensetzungen von unpolar bis zu hochpolar reichten. Die wichtigsten extrazellularen Produkte, die von dieser Flechtenspezies isoliert wurden waren Thiophaninsäure, Physodalsäure, Physodsäure, Atranorin und Ventossäure. Das Kohlenhydrat D-arabit wurde von den etwas mehr polaren Extrakten isoliert. Die isolierten Bestandteile wurden durch Mischungsschmelzpunkte, spezifische Farbproben, dünnschicht-chromatographische Rf-Werte, Infrarotspektroskopie, NMR-Spektroskopie, Massenspektrometrie und Elementaranalyse identifiziert. Quantitative Bestimmungen erfolgten hinsichtlich der Flechten-Bestandteile. Die drei Verbindungen Thiophaninsäure, Ventossäure und D-arabit werden hier zum erstenmal als Bestandteile dieser Flechte beschrieben.

Résumé

On a soumis le lichenHypogymnia enteromorpha (Ach.) Nyl. à une séquence d'extractions à l'aide d'une série de solvants comprenant des liquides de nature non-polaire jusqu'à très polaire. Les principaux produits extracellulaires de lichen isolés de cette espèce comprennent l'acide thiophéninique, l'acide physodalique, l'acide physodique, l'atranorine et l'acide ventosique. On a isolé l'hydrate de carbone D-arabitol parmi des solvants de haute polarité. L'identification des constituants se fit à l'aide des points de fusions, les épreuves colorimetriques spécifiques, les valeurs Rf de chromatographie sur couche mince, la spectroscopie infrarouge, la spectrometrie de masse et l'analyse élémentaire. Des évaluations quantitatives du niveau de ces composants de lichen présents dans cette plante sont presentées. Trois composés, l'acide thiophaninique, l'acide ventosique et le D-arabitol sont rapportés ici pour la première fois comme constituants de ce lichen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asahina, Y. (1951). Lichens Japoniae novae vel minus cognitae. (2).Jour. Jap. Bot. 26:97–102.Google Scholar
  2. Asahina, Y. (1952). Lichens of Japan. Genus Parmelia. Vol. II. Research Institute for Natural Resources. Tokyo.Google Scholar
  3. Asahina, Y. & H. Nogami. (1935). Constitution of physodic acid.Chem. Ber. 68B:77–80.Google Scholar
  4. Asahina, Y. & M. Yanagita. (1933). Untersuchungen über Flechtenstoffe, XXX. Mitteil: Ueber caprarsäure.Chem. Ber. 66:1217–1220.Google Scholar
  5. Asahina, Y. & M. Yanagita. (1934). Lichen acid, norstictinic acid, and the occurrence of d-arabitol in lichens.Chem. Ber. 67:799–803.Google Scholar
  6. Beyon, J.H. (1960). Mass Spectrometry and its Application to Organic Chemistry. Elsevier, Amsterdam.Google Scholar
  7. Bohman, G. (1969). Chemical studies on lichens. Anthraquinones fromNephroma laevigatum.Arkiv Kemi 30:217–223.Google Scholar
  8. Brown, T.L. (1962). Infrared carbonyl absorption in some p-quinones and related substances.Spectrochimica Acta 18:1065–1071.Google Scholar
  9. Conley, R.T. (1966). Infrared Spectroscopy. Ally & Bacon, Inc. Boston.Google Scholar
  10. Culberson, C.F. (1969). Chemical and Botanical Guide to Lichen Products. Univ. of North Carolina Press. Chapel Hill.Google Scholar
  11. Culberson, C.F. & H.D. Kristinsson. (1970). A standardized method for the identification of lichen products.J. Chromatog. 46:85–90.Google Scholar
  12. Hale, M.E., Jr. (1958). Chemical components of type specimens in Parmelia.Brittonia 10:177–180.Google Scholar
  13. Hale, M.E., Jr. (1967). The Biology of Lichens. Edward Arnold Ltd. London.Google Scholar
  14. Hale, M.E., Jr. (1969). How to Know the Lichens. Wm. C. Brown Company Publishers. Dubuque.Google Scholar
  15. Krog, H. (1968). The Macrolichens of Alaska. Norsk Polarinstitutt Skrifter Nr. 144. Oslo.Google Scholar
  16. Lindberg, B. (1955). Studies on the chemistry of lichens. Investigation of a Dermatocarpan and some Roccella species.Acta Chem. Scand. 9:917–919.Google Scholar
  17. Llano, G.A. (1948). Economic Uses of Lichens.Econ. Bot. 2:15–45.Google Scholar
  18. Nakanishi, K. (1960). Practical Infrared Absorption Spectroscopy. Nankodo Co. Ltd. Tokyo.Google Scholar
  19. Nuno, M. (1964). Chemism ofParmelia subgenushypogymnia Nyl.Jour. Jap. Bot. 39:97–103.Google Scholar
  20. Perez-Llano, G.A. (1944). Lichens Their Biological and Economic Significance.Bot. Rev. 10:1–65.Google Scholar
  21. Poelt, J. & S. Huneck. (1968).Lecanora vinetorum nova spec., ihre vergesellschaftung, ihre ökologie und ihre chemie.Osterr. Bot. Z. 115:411–422.Google Scholar
  22. Santesson, J. (1967). Thin layer chromatography of lichen substances.Acta Chem. Scand. 21:1162–1172.Google Scholar
  23. Santesson, J. (1969a). Chemical studies on lichens 10. Mass spectrometry of lichens.Arkiv Kemi 30:363–377.Google Scholar
  24. Santesson, J. (1969b). Chemical studies on lichens 17. The xanthones ofLecanora straminea. II. 2,7-dichloronorlichexanthone.Arkiv Kemi 30:455–460.Google Scholar
  25. Santesson, J. (1969c). Chemical studies on lichens 19. Infrared and mass spectra of some lichen xanthones.Arkiv Kemi 30:479–490.Google Scholar
  26. Santesson, J. & C.A. Wachtmeister. (1969). Chemical studies on lichens 15. 2,4-Dichloro — 6-methoxy — 1,3-dihydroxy — 8-methylxanthone (thiophaninic acid) fromPertusaria flavicans.Arkiv Kemi 30:445–448.Google Scholar
  27. Silverstein, R.M. & G.C. Bassler. (1967). Spectrometric Identication of Organic Compounds. John Wiley & Sons, Inc. New York.Google Scholar
  28. Solberg, Y.J. (1955). Studies on the chemistry of lichens I. d-Arabitol fromAlectoria jubala Ach. var.chalybeiformis Th.Fr.Acta Chem. Scand. 9:1234–1235.Google Scholar
  29. Solberg, Y.J. (1957). Studies on the chemistry of lichens II. Chemical components ofHaematomna ventosum (L.) Mass. var.lapponicum (Räs).Acta Chem. Scand. 11:1477–1484.Google Scholar
  30. Solberg, Y.J. (1960). Studies on the chemistry of lichens III. Long-chain tetrahydroxy fatty acids from some Norwegian lichens.Acta Chem. Scand. 14:2152–2160.Google Scholar

Copyright information

© Martinus Nijhoff/Dr. W. Junk Publishers 1974

Authors and Affiliations

  • Takayuki Shibamoto
    • 1
  • Richard A. Bernhard
    • 1
  1. 1.University of CaliforniaDavisUSA

Personalised recommendations