Advertisement

Journal of Applied Electrochemistry

, Volume 22, Issue 7, pp 596–605 | Cite as

Effect of gas sparging on mass transfer in zinc electrolytes

  • A. Y. Hosny
  • T. J. O'Keefe
  • J. W. Johnson
  • W. J. James
Papers

Abstract

The effect of sparging on mass transfer is reported for zinc electrolytes containing antimony and antimony-free electrolytes. Comparative results with non-sparged electrolytes show, an enhancement in mass transfer. In the sparged electrolyte, the mass transfer coefficients,KZn, increase with increasing current density, antimony additions, and sulphuric acid concentration. The deposition morphology is consistent with the mass transfer results. A relationship between the mass transfer coefficients for sparged and non-sparged systems is obtained. The relationship correlates satisfactorily with the data and provides a quantitative method for determining the degree of enhancement in mass transfer coefficients due to sparging. The correlation which best represents the mass transfer data for sparged zinc electrolytes is
$$Sh = 105(ReSc)^{0.23} $$
whereSh, Re, andSc are the Sherwood, Reynolds, and Schmidt numbers, respectively. The correlation represents the case where sparging is applied to a gas evolving electrode, hydrogen in this case.

Keywords

Hydrogen Zinc Physical Chemistry Mass Transfer Acid Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. R. Johnson and L. E. Pfister, The Fourth AES Continuous Strip Plating Symposium, American Electroplater's Society, Inc., Winter Park, FL, May (1985) Dl.Google Scholar
  2. [2]
    S. F. Chen, PhD Dissertation, University of Missouri-Rolla (1986) pp. 55–84.Google Scholar
  3. [3]
    L. Sigrist, O. Dossenbach, and N. Ibl,Int. J. Heat Mass Transfer 22 (1978) 1393–9.Google Scholar
  4. [4]
    G. H. Sedahmed,J. Appl. Electrochem. 15 (1985) 777.Google Scholar
  5. [5]
    H. Vogt, in Comprehensive Treatise of Electrochemistry’, Vol. 6 (edited by E. Yeager, J. O'M Bockris, B. E. Conway, and S. Sarangapani), Plenum Press, New York (1983) p. 445.Google Scholar
  6. [6]
    V. A. Ettel, B. V. Tilak, and A. S. Gendron,J. Electrochem. Soc. 121 (1974) 867.Google Scholar
  7. [7]
    G. H. Sedahmed, H. A. Farag, A. A. Zatout, and F. A. Katout,J. Appl. Electrochem. 16 (1986) 374.Google Scholar
  8. [8]
    G. H. Sedahmed and L. W. Schmilt,Can. J. Chem. Eng. 60 (1982) 767.Google Scholar
  9. [9]
    G. H. Sedahmed,J. Appl. Electrochem. 8 (1978) 399.Google Scholar
  10. [10]
    10 (1980) 351.Google Scholar
  11. [11]
    S. Mohanta and T. Z. Fahidy,7 (1977) 235.Google Scholar
  12. [12]
    J. R. Cuzmar, PhD Dissertation, University of Missouri-Rolla (1985) pp. 47–108.Google Scholar
  13. [13]
    L. J. J. Janssen and J. G. Hoogland,Electrochim. Acta 18 (1973) 543.Google Scholar
  14. [14]
    A. Y. Hosny, PhD Dissertation University of Missouri-Rolla (1987).Google Scholar
  15. [15]
    H. Vogt,Electrochim. Acta 23 (1978) 203.Google Scholar
  16. [16]
    R. Winand, Electrocrystallization, in ‘Application of Polarization Measurements in the Control of Metal Deposition’ (edited by I. H. Warren) Elsevier Science, Amsterdam, The Netherlands (1984) pp. 47–83.Google Scholar
  17. [17]
    E. W. Washburn, ‘International Critical Tables,’, McGraw-Hill, New York (1929) 65.Google Scholar
  18. [18]
    L. J. J. Janssen and J. G. Hoogland,Electrochim. Acta 15 (1970) 1013.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • A. Y. Hosny
    • 1
  • T. J. O'Keefe
    • 1
  • J. W. Johnson
    • 1
  • W. J. James
    • 1
  1. 1.Departments of Chemical Engineering, Metallurgical Engineering, and Chemistry and Graduate Center for Materials ResearchUniversity of Missouri-RollaRollaUSA

Personalised recommendations