Advertisement

Ukrainian Mathematical Journal

, Volume 31, Issue 6, pp 544–553 | Cite as

Asymptotic behavior and oscillatory character of bounded solutions of differential equations with deviating arguments

  • V. A. Staikos
Article
  • 24 Downloads

Keywords

Differential Equation Asymptotic Behavior Bounded Solution Oscillatory Character 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    F. V. Atkinson, “On second-order differential inequalities,” Proc. R. Soc. Edinburgh,72, 109–127 (1972/73).Google Scholar
  2. 2.
    Lu-San Chen, “On the nonoscillatory properties of solutions of a functional differential equation,” Bull. Soc. Math. Grèce,17, 11–19 (1976).Google Scholar
  3. 3.
    M. K. Grammatikopoulos, “Oscillatory and asymptotic behavior of differential equations with deviating arguments,” Hiroshima Math. J.,6, 31–53 (1976).Google Scholar
  4. 4.
    M. K. Grammatikopoulos, “On the oscillatory character of bounded solutions of differential equations with perturbed arguments,” Chekhoslovatskii Mat. Zh.,27, 186–200 (1977).Google Scholar
  5. 5.
    M. K. Grammatikopoulos, Y. G. Sficas, and V. A. Staikos, “Oscillatory properties of strongly superlinear differential equations with deviating arguments,” J. Math. Anal. Appl. (to appear).Google Scholar
  6. 6.
    G. H. Hardy and J. E. Littlewood, “Contributions to the arithmatic theory of series,” Proc. London Math. Soc.,11, 411–478 (1913).Google Scholar
  7. 7.
    A. G. Kartsatos, “On the maintenance of oscillations of n-th-order equations under the effect of a small forcing term,” J. Different. Equations,10, 355–363 (1971).Google Scholar
  8. 8.
    A. G. Kartsatos, “On positive solutions of perturbed nonlinear differential equations,” J. Math. Anal. Appl.,47, 58–68 (1974).Google Scholar
  9. 9.
    I. T. Kiguradze, “On the oscillatory character of solutions of the equation dmu/dtm +a(t)¦u¦nsgnu = 0,” Mat. Sb.,65, 172–187 (1964).Google Scholar
  10. 10.
    I. T. Kiguradze, “On the question of the oscillatory character of solutions of nonlinear differential equations,” Differents. Uravn.,1, 995–1006 (1965).Google Scholar
  11. 11.
    R. G. Koplatadze, “On oscillatory solutions of second order delay differential inequalities,” J. Math. Anal. Appl.,42, 148–157 (1973).Google Scholar
  12. 12.
    R. G. Koplatadze, “A remark on the oscillatory character of solutions of differential inequalities and equations of high order with delayed argument,” Differents. Uravn.,10, 1400–1405 (1974).Google Scholar
  13. 13.
    T. Kusano, “Oscillatory behavior of higher order retarded differential equations,” in: Proceedings of Carathèodory International Symposium (Athens, September 3–7, 1973), The Greek Math. Soc., pp.370-–389.Google Scholar
  14. 14.
    T. Kusano and H. Onose, “Nonoscillation theorems for differential equations with deviating arguments,” Pac. J. Math.,63, 185–192 (1976).Google Scholar
  15. 15.
    T. Kusano and H. Onose, “Asymptotic behavior of nonoscillatory solutions of nonlinear differential equations with forcing term,” Ann. Mat. Pure Appl.,112, 231–240 (1977).Google Scholar
  16. 16.
    T. Kusano and H. Onose, “Asymptotic behavior of nonoscillatory solutions of functional equations of arbitrary order,” J. London Math. Soc.,14, 106–112 (1976).Google Scholar
  17. 17.
    B. S. Lalli and R. P. Jahagirdar, “Oscillatory properties of a second order nonlinear functional differential equation,” in: Proceedings of Carathèodory International Symposium (Athens, September 3–7, 1973), The Greek Math. Soc., pp. 390–396.Google Scholar
  18. 18.
    P. Marušiak, “Oscillation of solutions of nonlinear delay differential equations,” Mat. Časopis Sloven. Akad. Vied.,24, 371–380 (1974).Google Scholar
  19. 19.
    M. Naito, “Oscillations of differential inequalities with retarded arguments,” Hiroshima Math, J.,5, 187–192 (1975).Google Scholar
  20. 20.
    J. Schauder, “Der Fixpunktsatz in Funktionalräumen,” Stud. Math.,2, 171–180 (1930).Google Scholar
  21. 21.
    B. Singh, “Nonoscillation of forced fourth-order retarded equations,” SIAM J. Appl. Math.,28, 265–269 (1975).Google Scholar
  22. 22.
    B. Singh, “Asymptotic nature of nonoscillatory solutions of n-th-order retarded differential equations,” SIAM J. Math. Anal.,6, 784–795 (1975).Google Scholar
  23. 23.
    V. A. Staikos and Ch. G. Philos, “On the asymptotic behavior of nonoscillatory solutions of differential equations with deviating arguments,” Hiroshima Math. J.,7, 9–31 (1977).Google Scholar
  24. 24.
    V. A. Staikos and Ch. G. Philos, “Asymptotic properties of nonoscillatory solutions of differential equations with deviating arguments,” Pac. J. Math.,70, 221–242 (1977).Google Scholar
  25. 25.
    V. A. Staikos and Y. G. Sficas, “Forced oscillations for differential equations of arbitrary order,” J. Different. Equations,17, 1–11 (1975).Google Scholar
  26. 26.
    V. A. Staikos and Y. G. Sficas, “Criteria for asymptotic and oscillatory character of functional differential equations of arbitrary order,” Boll. Un. Mat. Ital.,6, 185–192 (1972).Google Scholar
  27. 27.
    M. Švec, “Fixpunktsatz und monotone Lösungen der Differentialgleichung y(n) + B(x, y, y',..., y(n−1)) · y = 0,” Arch. Math. (Brno),2, 43–55 (1966).Google Scholar
  28. 28.
    M. Svec, “Monotone solutions of some differential equations,” Colloq. Math.,18, 7–21 (1967).Google Scholar
  29. 29.
    M. Svec, “Les propriétés asymptotiques des solutions d'une équation différentielle nonlinéaire d'order n,” Czechoslovak Math. J.,17, 550–557 (1967).Google Scholar
  30. 30.
    H. Teufel, Jr., “A note on second order differential inequalities and functional differential equations,” Pac. J. Math.,41, 537–541 (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • V. A. Staikos
    • 1
  1. 1.Ioannina UniversityGreece

Personalised recommendations