Advertisement

Ukrainian Mathematical Journal

, Volume 31, Issue 6, pp 489–495 | Cite as

A problem with a finite group of shifts for a pair of functions analytic in a domain

  • P. G. Bashkarev
Article
  • 18 Downloads

Keywords

Finite Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    F. D. Gakhov, Boundary Value Problems, Pergamon (1966).Google Scholar
  2. 2.
    P. G. Bashkarev, Yu. I. Karlovich, and A. P. Nechaev, “On the theory of singular integral operators with a finite group of shifts,” Dokl. Akad. Nauk SSSR,219, No. 2, 272–274 (1974).Google Scholar
  3. 3.
    D. A. Kveselava, “Some boundary problems in function theory,” Tr. Mat. Inst. Gruz. SSR,16, 39–80 (1948).Google Scholar
  4. 4.
    G. S. Litvinchuk and É. G. Khasabov, “On a type of singular integral equations,” Sib. Mat. Zh.,5, No. 3, 610–627 (1974).Google Scholar
  5. 5.
    A. P. Nechaev, “On a boundary problem for a pair of functions analytic in a domain,” Dopov. Akad. Nauk Ukr. SSR, Ser. A, No. 10, 891–893 (1969).Google Scholar
  6. 6.
    G. S. Litvinchuk and A. P. Nechaev, “Generalized Carleman boundary problem,” Mat. Sb.,82, No. 1, 30 (1970).Google Scholar
  7. 7.
    P. G. Bashkarev and A. P. Nechaev, “On the theory of boundary problems with shift,” Dopov. Akad. Nauk Ukr. SSR, Ser. A, No. 2, 99–102 (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • P. G. Bashkarev
    • 1
  1. 1.Odessa Institute of Naval EngineersUSSR

Personalised recommendations