Advertisement

Plant Foods for Human Nutrition

, Volume 39, Issue 4, pp 331–337 | Cite as

Quantitative determinations of chemical compounds with nutritional value from inca crops:Chenopodium quinoa (‘quinoa’)

  • J. A. González
  • A. Roldán
  • M. Gallardo
  • T. Escudero
  • F. E. Prado
Article

Abstract

Quantitative determinations of total and soluble proteins, total and free sugars, starch, total lipids, tanins, ash (Ca, Na, K, Fe, and P), and caloric value were carried out on quinoa flour.

Results show that the amount of soluble proteins was higher than the standard value for wheat and maize and was very close to that of barley's. The yield of free sugars like glucose (4.55%), fructose (2.41%) and sucrose (2.39%) were also of importance.

Iron and calcium levels were higher than the reported values for maize and barley. The same occurred for the caloric value (435.5 Kcal/100 g).

The content of saponins was also examined since its effect on red blood cells of group A and O has been related as a potential problem of the Andes population.

From the chemical analysis a more complete view about quinoa as human food was presented.

Keywords

Iron Lipid Sucrose Starch Maize 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilar RH, Guevara L, Alvarez JO (1979) Un nuevo método para la determinación cuantitativa de saponinas y su aplicación a diversas variedades de quinoa peruana. Acta Cientifica Venezolana 30: 167–171Google Scholar
  2. Ameyama M, Shinagawa E, Matsushita K, Adachi O (1981) D-fructose deshydrogenase ofGluconobacter industrius: purification, characterization, and application to enzymatic microdetermination of D-fructose, J Bacteriol 145: 814–823Google Scholar
  3. AOAC (1980) Direct acid hydrolysis. In: Official Method of Analysis. Washington, D.C.: Association of Official Analytical Chemists, 145 pp.Google Scholar
  4. Balon E, Telleria W, Hutton J (1976) Approximación a la deteccion de saponinas por cromatografia de capa fina. In: ‘Segunda Convencion Internacional de Quenopodiaceas’, pp. 89–94, Universidad Boliviana Tomás Frias. Comité Departamental de Obras Públicas de Potosi, BoliviaGoogle Scholar
  5. Cardini CE, Leloir LF, Chiriboga J (1955) The biosynthesis of sucrose. J Biol Chem 214: 149–155Google Scholar
  6. Dahlqvist A (1961) Determination of maltose and isomaltose activities with a glucose-oxidase reagent. Bioch J 80: 547–551Google Scholar
  7. Dobzhansky T, Ayala FJ, Stebbins GL, Valentine JW (1980) Evolución. Ed. Omega. S.A. BarcelonaGoogle Scholar
  8. Dubois M, Guilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28: 350–356Google Scholar
  9. Irving GW, Fontaine ID (1945) Electrophoretic investigation of peanut proteins. I. Peanut meal extract, arachin and conarachin. Arch Biochem 7: 475–489Google Scholar
  10. Janssen W, Terpstra MM, Beeking FFE, Bisalsky AJN (1979) Feeding values for poultry. 2nd edn. Beekbergen, Netherlands: Institute for Poultry Research SpelderholtGoogle Scholar
  11. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275Google Scholar
  12. Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153: 375–380Google Scholar
  13. Price ML, Butler LG (1977) Rapid visual estimation and spectrophotometric determination of tannin content ofSorghum grain. Agric and Food Chemistry 25: 1268–1273Google Scholar
  14. Risi C, Galwey NW (1984) TheChenopodium grain in the Andes: Inca crops for modern agriculture. Adv Applied Biology 10: 145–216Google Scholar
  15. Roe JH, Papadopoulos NM (1954) The determination of fructose-6-phosphate and fructose-1,6-diphosphate. J Biol Chem 210: 703–707Google Scholar
  16. Somogyi NA (1945) A new reagent for the determination of sugars. J Biol Chem 160: 61–68Google Scholar
  17. Tapia ME (1979) Historia y distribución geogràfica. In: Tapia ME (ed.), Quinua y Kañiua — Cultivos andinos. Serie Libros y Manuales Educativos, No. 49. Bogotá, Colombia: Instituto Interamericano de ciencias Agricolas, pp. 11–15Google Scholar
  18. Trevelyan WE, Procter DP, Harrison JS (1950) Detection of sugars on paper chromatograms. Nature 166: 444–445Google Scholar
  19. Winton AL, Winton KB (1947) Analisis de alimentos. Edit. HASA. Bs. As. 1199 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • J. A. González
    • 1
  • A. Roldán
    • 2
  • M. Gallardo
    • 1
    • 2
  • T. Escudero
    • 2
  • F. E. Prado
    • 3
  1. 1.Fundación Miguel LilloInstituto de BotánicaTucumánArgentina
  2. 2.Facultad de Ciencias NaturalesUniversidad Nacional de TucumánArgentina
  3. 3.Facultad de Bioquimica, Quimica y Farmacia, Cátedra de FitoquimicaUniversidad Nacional de TucumánArgentina

Personalised recommendations