Ukrainian Mathematical Journal

, Volume 20, Issue 5, pp 569–582 | Cite as

On the nonrealizability of the libration points of a gravitating ellipsoid

  • S. I. Nikolaev
Article
  • 18 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Yu. V. Batrakov, The periodic motion of a particle in the gravitational field of a rotating triaxial ellipsoid, Byull. ITA,6, 8(81) (1957).Google Scholar
  2. 2.
    V. K. Abalakin, The problem of the stability of the libration points in the neighborhood of a rotating and gravitating ellipsoid, Byull. ITA,6, 8(81) (1957).Google Scholar
  3. 3.
    N. A. Artem'ev, Investigations into the realizability of periodic motions, Izv. Akad. Nauk SSSR, Ser. Matem.,5, 2 (1941).Google Scholar
  4. 4.
    N. A. Artem'ev, A method for the determination of the characteristic indices and an application of it to two problems in celestial mechanics, Izv. Akad. Nauk SSSR, Ser. Matem.,8, 2 (1944).Google Scholar
  5. 5.
    N. A. Artem'ev, The Foundations of the Qualitative Theory of Ordinary Differential Equations [in Russian], Part 1, Izd-vo Leningr. Un-ta (1941).Google Scholar
  6. 6.
    M. F. Subbotin, A Course in Celestial Mechanics [in Russian], Vol. 2, ONTI (1937).Google Scholar
  7. 7.
    G. A. Chebotarev, Analytic and Numerical Methods in Celestial Mechanics [in Russian], Nauka, Moscow (1965).Google Scholar
  8. 8.
    E. W. Brown and D. Brouwer, Tables for the Development of the Disturbing Function with Schedules for Harmonic Analysis, Cambridge (1932).Google Scholar
  9. 9.
    A. Poincaré, Curves Defined by Differential Equations [Russian translation], Moscow (1947).Google Scholar
  10. 10.
    A. M. Lyapunov, Collected Works [in Russian], Vol.2, Izd-vo AN SSSR (1956).Google Scholar

Copyright information

© Consultants Bureau 1969

Authors and Affiliations

  • S. I. Nikolaev
    • 1
  1. 1.Kiev

Personalised recommendations