Plant Foods for Human Nutrition

, Volume 38, Issue 2, pp 175–188 | Cite as

Variation of the amino acid scores and of the nitrogen-to-protein conversion factors in barley grain as a function of nitrogen content as compared with wheat and rye

  • Jean-Claude Huet
  • Jacques Baudet
  • Leila Bettaieb
  • Ben Kaab
  • Jacques Mossé


Barley grains (9 samples from 7 cultivars) with nitrogen contents (N) ranging from 1.45 to 4.01% of dry matter were analysed for their amino acid (AA) composition with high accuracy from six different hydrolysates per sample. AA levels in grain increased as linear functions ofN with correlation coefficients close to unity. A comparison with literature data confirmed that the AA composition of any grain sample of normal barley can be predicted from itsN for all phenotypes and genotypes. AAs in grain protein changed as hyperbolic functions ofN which increased for Phe, Pro and Glx but more or less strongly decreased for the other AAs. By plotting AA scores againstN, barley proteins were shown to be always richer than wheat and rye in Val and Phe + Tyr; sometimes richer than both other species forN<2 (Lys); 2.2 (Leu and Ile); 3.4 (Thr); sometimes intermediate to wheat and rye above the latterN values. They were also intermediate in sulphur AAs forN<1.9 and drastically poorer forN>1.9. However, they were richer than both other species in Trp forN>1.6. The hyperbolic variations of non-protein nitrogen and nitrogen-to-protein conversion factors were determined as a function ofN and also compared with those of wheat and rye.

Key words

barley Triticeae grain amino acid composition nitrogen chemical score 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andersen AJ, Køie B (1975)N fertilization and yield response of high lysine and normal barley. Agronomy J 67: 695–698Google Scholar
  2. 2.
    Baudet J, Huet JC, Mossé J (1986) Variability and relationships among amino acids and nitrogen in maize grains. J Agric Food Chem 34: 365–370Google Scholar
  3. 3.
    Baudet J, Huet JC, Mossé J (1987) Interdépendance entre la composition en acides aminés du grain de seigle et son taux d'azote. Agronomie: 7 (in press)Google Scholar
  4. 4.
    Baudet J, Leclercq P, Mossé J (1971) Sur la richesse en lysine des graines de Tournesol. CR Acad Sci Paris 273D: 1112–1115Google Scholar
  5. 5.
    Briggs DE (1978) Barley. Chapman and Hall (eds), LondonGoogle Scholar
  6. 6.
    Chery J (1979) Influence de la fertilisation azotée sur le rendement et la qualité du grain de différentes variétés d'orge. In: Seed Protein Improvement of Cereals and Grain Legumes. Proc Symp Neuherberg IAEA. Vienne: IAEA, Vol. 1, pp 283–296Google Scholar
  7. 7.
    Chung OK, Pomeranz Y (1985) Amino acids in cereal proteins and protein fractions. In: Finley JW, Hopkins DT (eds) Digestibility and Amino Acid Availability in Cereals and Oilseeds. St Paul (Minn) USA: AAC Inc Publ, pp 65–107Google Scholar
  8. 8.
    Chung OK, Pomeranz Y (1985) Proteins in developing and germinating cereal grains and grain fractions. In: Finley JW, Hopkins DT (eds) Digestibility and Amino Availability in Cereals and Oilseeds, St Paul (Minn) USA: AAC Inc Publ, pp 109–168Google Scholar
  9. 9.
    Coīc Y, Fauconneau G, Pion R, Busson F, Lesaint C, Labonne F (1963) Influence de l'alimentation minérale sur la composition des protides des graines de céréales (Blé et Orge). Ann Physiol Vég 5: 281–292Google Scholar
  10. 10.
    Eggum BO (1970) Uber die Abhängigkeit der Proteinqualität von Stickstoffgehalt der Gerste. Z. Tierphysiol Tierernähr Futtermittelk 26: 65–71Google Scholar
  11. 11.
    Eppendorfer WH (1968) The effect of nitrogen and sulfur on changes in nitrogen fractions of barley plants at various early stages of growth and on yield and amino acid composition of grain. Plant Soil 29: 424–438Google Scholar
  12. 12.
    Eppendorfer WH (1971) Effects of S, N and P on amino acid composition of field beans (Vicia faba) and responses of the biological value of the seed protein to S-amino acid content. J Sci Food Agric 22: 501–505PubMedGoogle Scholar
  13. 13.
    Eppendorfer WH (1975) Effects of fertilizers on quality and nutritional value of grain protein. In: Fertilizer Use and Protein Production, Proceeding 11th Coll Int Potash Institute, Rönne-Bornholm, Denmark, IPI, BerneGoogle Scholar
  14. 14.
    Eppendorfer WH, Bille SW (1974) Amino acid composition as a function of total-N in pea seeds grown on two soils with P and K additions. Plant Soil 41: 33–39Google Scholar
  15. 15.
    FAO (1973) Energy and protein requirements Food and Agricultural Organization Nurition Meetings Report Series, no 52. Roma: FAOGoogle Scholar
  16. 16.
    Finley JW (1985) Reducing variability in amino acid analysis. In: Finley JW, Hopkins DT (eds) Digestibility and amino acid availability in cereals and oilseeds, St Paul (Minn) USA: AAC Inc Publ, pp 15–30Google Scholar
  17. 17.
    Jones AS, Cadenhead A, Livingstone RM (1968) Variation in the composition of barley and its effect on the performance of pigs. J Sci Food Agric 19: 446–448Google Scholar
  18. 18.
    Laberge DE, MacGregor AW, Metcalfe DR (1976) Screening for high-lysine cultivars in a barley breeding program. Can J Plant Sci 56: 817–821Google Scholar
  19. 19.
    Martens H, Bach Knudsen KE (1980) Fractioning barley proteins by computer factor analysis. Cereal Chem 57: 97–105Google Scholar
  20. 20.
    McGeown P, Maguire MF (1967) Relationships between crude protein content and amino acid composition of Irish barleys. Irish J Agric Res 6: 221–227Google Scholar
  21. 21.
    Mossé J, Baudet J (1969) Etude intervariétale de la qualité protéique des orges: taux d'azote, composition en acides aminés et richesse en lysine. Ann Physiol Vég 11: 51–66Google Scholar
  22. 22.
    Mossé J, Baudet J (1977) Relations entre la composition en acides aminés basiques et la teneur en azote de grains d'orge. In: Europ Brewery Conv, Proceed 16th Congress. Elsevier Amsterdam, pp 27–34Google Scholar
  23. 23.
    Mossé J, Baudet J (1983) Crude protein content and amino acid composition of seeds: variability and correlations. (Qual Plant) Plant Foods Hum Nutr 32: 225–245Google Scholar
  24. 24.
    Mossé J, Huet JC, Baudet J (1985) The amino acid content of wheat grain as a function of nitrogen content. J Cereal Sci 3: 115–130Google Scholar
  25. 25.
    Mossé J, Huet JC, Baudet J (1987) Relationships between nitrogen, amino acids and storage proteins inLupinus albus seeds. Phytochemistry 26: 2453–2458Google Scholar
  26. 26.
    Mossé J, Huet JC, Baudet J (1987) Changements de la composition en acides aminés des grains de pois en fonction de leur taux d'azote. Sci Aliments 7: 301–324Google Scholar
  27. 27.
    Mossé J, Huet JC, Baudet J (1988) The amino acid composition of Triticale grain as a function of nitrogen content. J Cereal Sci 6: (in press)Google Scholar
  28. 28.
    Munck L (1981) Barley for food, feed and industry. In: Pomeranz Y, Munck L (eds) Cereals: a renewable resource, theory and practice. Minnesota: AACC, pp 427–459Google Scholar
  29. 29.
    Pion R (1971) Composition en acides aminés des aliments. Ind Alim Anim 6: 29–36Google Scholar
  30. 30.
    Pomeranz Y, Robbins GS (1976) Amino acid composition of isogenic lines in barley. J Agric Food Chem 24: 196–198PubMedGoogle Scholar
  31. 31.
    Pomeranz Y, Robbins GS, Gilbertson JT, Booth GD (1977) Effects of nitrogen fertilization on lysine, threonine, and methionine of hulled and hull-less barley cultivars. Cereal Chem 54: 1034–1042Google Scholar
  32. 32.
    Pomeranz Y, Robbins GS, Smith RT, Craddock JC, Gilbertson JT, Moseman JG (1976) Protein content and amino acid composition of barleys from the World Collection. Cereal Chem 53: 497–504Google Scholar
  33. 33.
    Rhodes AP, Mathers JC (1974) Varietal differences in the amino acid composition of barley grain during development and under varying nitrogen supply. J Sci Food Agric 25: 963–972PubMedGoogle Scholar
  34. 34.
    Sosulski FW, Wright AT, Hoover R (1986) Evaluation of protein nutritive value in barley and wheat cultivars usingAspergillus flavus. (Qual Plant) Plant Foods Hum Nutr 36: 63–73Google Scholar
  35. 35.
    Thomke S (1970) Uber die Veränderung des Aminosaüregehaltes der Gerste mit steigendem Sticktoffgehalt. Z Tierphysiol Tierernähr Futtermittelk 27: 23–31Google Scholar
  36. 36.
    Tkachuk R (1969) Nitrogen-to-protein conversion factors for cereals and oilseed meals. Cereal Chem 46: 419–423Google Scholar
  37. 37.
    Winkler U, Schön WJ (1980) Amino acid composition of the kernel proteins in barley resulting from nitrogen fertilization at different stages of development. Z Acker-Pflanzenbau 149: 503–512Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • Jean-Claude Huet
    • 1
  • Jacques Baudet
    • 1
  • Leila Bettaieb
    • 1
  • Ben Kaab
    • 1
  • Jacques Mossé
    • 1
  1. 1.Laboratoire d'Etude des Protéines, Département de Physiologie et Biochimie végétalesINRAVersaillesFrance

Personalised recommendations