Skip to main content
Log in

Integrable Hamiltonian systems connected with graded Lie algebras

  • Published:
Journal of Soviet Mathematics Aims and scope Submit manuscript

Abstract

In this paper there is given a geometric scheme for constructing integrable Hamiltonian systems based on Lie groups, generalizing the construction of M. Adler. The operation of this scheme is considered for parabolic decompositions of semisimple Lie groups. Fundamental examples of integrable systems are connected with graded Lie algebras. Among them are the generalized periodic chains of Toda, multidimensional tops, and the motion of a point on various homogeneous spaces in a quadratic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. A. A. Kirillov, “Unitary representations of nilpotent Lie groups,” Usp. Mat. Nauk,17, No. 4, 57–101 (1962).

    Google Scholar 

  2. V. I. Arnol'd, Ergodic Problems of Classical Mechanics, W. A. Benjamin (1968).

  3. P. D. Lax, “Integrals of nonlinear equations of evolution and solitary waves,” Matematika,13, No. 5, 128–150 (1969).

    Google Scholar 

  4. V. E. Zakharov and L. D. Faddeev, “Korteweg-de Vries equation of a completely integrable Hamiltonian system,” Funkts. Anal.,5, No. 4, 18–27 (1971).

    Google Scholar 

  5. M. Adler, “On a trace functional for formal pseudodifferential operators and the symplectic structure for Korteweg-de Vries type equations,” Invent. Math.,50, 219–248 (1979).

    Google Scholar 

  6. S. V. Manakov, “Complete integrability and stochastization in discrete dynamical systems,” Zh. Eksp. Teor. Fiz.,67, No. 2, 543–555 (1974).

    Google Scholar 

  7. H. Flashchka, “Toda lattice II,” Progr. Theor. Phys.,51, 703–716 (1974).

    Google Scholar 

  8. J. Moser, “Three integrable Hamiltonian systems connected with isospectral deformations,” Adv. Math.,16, 197–220 (1975).

    Google Scholar 

  9. P. van Moerbeke, “The spectrum of Jacobi matrices,” Invent. Math.,37, 45–81 (1976).

    Google Scholar 

  10. O. I. Bogoyavlensky, “On perturbations of the periodic Toda lattice,” Commun. Math. Phys.,51, 201–209 (1976).

    Google Scholar 

  11. S. V. Manakov, “Integration of Euler equations of the dynamics of an n-dimensional rigid body,” Funkts. Anal.,10, No. 4, 93–94 (1976).

    Google Scholar 

  12. M. A. Ol'shanetskii and A. M. Perelomov, “Explicit solutions of some completely integrable Hamiltonian systems,” Funkts. Anal.,11, No. 1, 75–76 (1977).

    Google Scholar 

  13. S. P. Novikov, “Periodic Korteweg-de Vries problem I,” Funkts. Anal.,8, No. 3, 54–66 (1974).

    Google Scholar 

  14. B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, “Linear equations of Korteweg-de Vries type, finite-zonal linear operators and Abelian manifolds,” Usp. Mat. Nauk,31, No. 1, 55–136 (1976).

    Google Scholar 

  15. D. Kazhdan, B. Kostant, and S. Sternberg, “Hamiltonian group actions and dynamical systems of Calogero type,” Commun. Pure Appl. Math.,31, No. 4, 481–508 (1978).

    Google Scholar 

  16. M. A. Olshanetsky and A. M. Perelomov, “Explicit solutions of the classical generalized Toda models,” Invent. Math.,54 (1979).

  17. A. G. Reyman and M. A. Semenov-Tian-Shansky, “Reduction of Hamiltonian systems, affine Lie algebras and Lax equations,” Invent. Math.,54, 81–100 (1979).

    Google Scholar 

  18. I. M. Krichever, “Algebraic curves and nonlinear difference equations,” Usp. Mat. Nauk,33, No. 4, 215–216 (1978).

    Google Scholar 

  19. P. van Moerbeke and D. Mumford, “The spectrum of difference operators and algebraic curves,” Acta Math.,143, 93–154 (1979).

    Google Scholar 

  20. B. Kostant, “The solution to a generalized Toda lattice and representation theory,” Adv. Math.,34, 195–338 (1979).

    Google Scholar 

  21. A. A. Kirillov, Elements of the Theory of Representations [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  22. D. R. Lebedev and Yu. I. Manin, “Equations of lengths of Benni waves. II. Lax representation and conservation laws,” Preprint ITÉF-89 (1979).

  23. I. M. Gel'fand and L. A. Dikii, “Fractional powers of operators and Hamiltonian systems,” Funkts. Anal.,10, No. 4, 13–29 (1976).

    Google Scholar 

  24. B. Kostant, “On Whittaker vectors and representation theory,” Invent. Math.,48, No. 2, 101–184 (1978).

    Google Scholar 

  25. B. Kostant, “The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group,” Am. J. Math.,81, 973–1032 (1959).

    Google Scholar 

  26. I. C. Gohberg and I. A. Fel'dman, Convolution Equations and Projection Methods for Their Solution, Amer. Math. Soc. (1975).

  27. A. S. Mishchenko and A. T. Fomenko, “Integration of Euler equations on semisimple Lie algebras,” Dokl. Akad. Nauk SSSR,231, No. 3, 536–538 (1976).

    Google Scholar 

  28. A. S. Mishchenko and A. T. Fomenko, “Euler equations on finite-dimensional Lie groups,” Izv. Akad. Nauk SSSR, Ser. Mat.,42, 396–415 (1978).

    Google Scholar 

  29. F. Magri, “A simple model of the integrable Hamiltonian equation,” J. Math. Phys.,19, 1156–1162 (1978).

    Google Scholar 

  30. P. P. Kulish and A. G. Reiman, “Hierarchy of sympletic forms for Schrödinger and Dirac equations on the line,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst.,77, 134–147 (1978).

    Google Scholar 

  31. I. M. Gel'fand and I. Ya. Dorfman, “Hamiltonian operators and algebraic structures connected with them,” Funkts. Anal.,13, No. 4, 13–30 (1979).

    Google Scholar 

  32. M. Adler and P. van Moerbeke, “Completely integrable systems, Kas-Moody Lie algebras, and curves,” Preprint (1979).

  33. J. Moser, “Geometry of quadrics and spectral theory,” Preprint (1979).

  34. A. G. Reiman, M. A. Semenov-Tyan-Shanskii, and I. B. Frenkel', “Graded Lie algebras and completely integrable dynamical systems,” Dokl. Akad. Nauk SSSR,247, 802–805 (1979).

    Google Scholar 

  35. I. M. Krichever, “Periodic non-Abelian Toda chain and its two-dimensional generalization,” Submitted to Dokl. Akad. Nauk SSSR.

  36. M. Duflo, “Operateurs differentiels bi-invariants sur un groupe de Lie,” Ann. Sci. École Norm. Sup., 4-e Ser.,10, 265–288 (1977).

    Google Scholar 

Download references

Authors

Additional information

Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR, Vol. 95, pp. 3–54, 1980.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reiman, A.G. Integrable Hamiltonian systems connected with graded Lie algebras. J Math Sci 19, 1507–1545 (1982). https://doi.org/10.1007/BF01091461

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01091461

Keywords

Navigation