Ukrainian Mathematical Journal

, Volume 30, Issue 6, pp 626–629 | Cite as

An algorithm for constructing the solution of a linear periodic boundary problem

  • S. V. Podolyan
Brief Communications


Periodic Boundary Boundary Problem Periodic Boundary Problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    K. Nixdorff, “Zur iterativen Bestimmung nichtlinearer Schwingungen,” Z. Angew. Math. Mech.,54, 819–822 (1974).Google Scholar
  2. 2.
    A. V. Kibenko, “On an approximate method for finding periodic solutions of nonstationary linear systems,” Tr. Nauchn. Issled. Inst. Mat., Voronezh Gos. Univ. [in Russian], No. 17, Voronezh (1975), pp. 41–45.Google Scholar
  3. 3.
    V. N. Laptinskii, “On linear systems with periodic coefficients,” Differents. Uravn.,11, No. 10, 1899–1901 (1975).Google Scholar
  4. 4.
    D. K. Lika and Yu. A. Ryabov, Iteration Methods and Majorants of the Lyapunov Equation in the Theory of Nonlinear Vibrations [in Russian], Shtiintsa, Kishinev (1974).Google Scholar
  5. 5.
    A. M. Samoilenko and N. I. Ronto, Numerical-Analytic Methods for Studying Periodic Solutions [in Russian], Vishcha Shkola, Kiev (1976).Google Scholar
  6. 6.
    V. N. Laptinskii, “Study of the stability of linear periodic differential systems by the variation of parameter method,” Differents. Uravn.,12, No. 9, 1713–1718 (1976).Google Scholar
  7. 7.
    W. Wasow, Asymptotic Expansions, Krieger (1976).Google Scholar
  8. 8.
    E. Kamke, Handbook on Ordinary Differential Equations, Chelsea Publ. (1974).Google Scholar
  9. 9.
    B. P. Demidovich, Lectures on the Mathematical Theory of Stability [in Russian], Nauka, Moscow (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • S. V. Podolyan
    • 1
  1. 1.Institute of Physics, Mogilev BranchAcademy of Sciences of the Belorussian SSRBelarus

Personalised recommendations