Advertisement

Ukrainian Mathematical Journal

, Volume 22, Issue 4, pp 394–410 | Cite as

On the application of linear methods to the approximation by polynomials of functions which are solutions of Fredholm integral equations of the second kind. I

  • V. K. Dzyadyk
Article
  • 20 Downloads

Keywords

Integral Equation Linear Method Fredholm Integral Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    N. I. Akhiezer and M. G. Krein, “On the best approximation of differentiable periodic functions by trigonometric sums,” Dokl. Akad. Nauk UkrSSR,15 (1937).Google Scholar
  2. 2.
    B. A. Bel'tyukov, Author's Abstract of Doctoral Dissertation, Kiev (1968).Google Scholar
  3. 3.
    G. M. Vainikko, “On the convergence and stability of the collocation method,” Diff. Urav.,1, No. 2 (1965).Google Scholar
  4. 4.
    G. M. Vainikko, “On the convergence of the collocation method for nonlinear differential equations,” Zh. Vychisl. Matem, i Matem. Fiz.,6, No. 1 (1966).Google Scholar
  5. 5.
    Ch. Vallee-Poussin, “Leçons sur l'approximation des fonctions d'une variable réelle,” Paris (1919).Google Scholar
  6. 6.
    D. Jackson, “On approximation by trigonometric sums and polynomials,” Trans. Amer. Math. Soc.,14, 491–515 (1912).Google Scholar
  7. 7.
    V. K. Dzyadyk, “On the best approximation in a class of periodic functions having a bounded s-th derivative (0 < s < 1),” Izv. Akad. Nauk SSSR, Ser. -Matem.,17 (1953).Google Scholar
  8. 8.
    V. K. Dzyadyk, “On the best approximation on classes of periodic functions defined by kernels which are integrals of absolutely monotonic functions,” Izv. Akad. Nauk SSSR, Ser. Matem.,23 (1959).Google Scholar
  9. 9.
    V. K. Dzya.dyk, “On the question of the best approximation of absolutely monotonie functions and certain other functions in the metric L, by trigonometric polynomials,” Izv. Akad. Nauk SSSR, Ser. Matem.,25 (1961).Google Scholar
  10. 10.
    V. K. Dzyakyk, V. T. Gavrilyuk, and O. I. Stepanets', “On the best approximation of Holder class functions by Rogosinski polynomials,” Dokl. Akad. Nauk UkrSSR., Ser. A, No. 3 (1969).Google Scholar
  11. 11.
    V. K. Dzyakyk, V. T. Gavrilyuk, and O. I. Stepanets', “On a precise upper bound of approximations on classes of differentiable periodic functions by Rogosinski polynomials,” Ukrainsk. Matem. Zh.,22, No. 4 (1970).Google Scholar
  12. 12.
    A. V. Efimov, “On the approximation of some classes of continuous functions by Fourier sums and Féjer sums,” Izv. Akad. Nauk SSSR, Ser. Macem.,22 (1958).Google Scholar
  13. 13.
    A. V. Efimov, “On the approximation of periodic functions by Vallee-Poussin sums,” Izv. Akad. Nauk SSSR, Ser. Matem.,23 (1959).Google Scholar
  14. 14.
    A. V. Efimov, “On the approximation of periodic functions by Vallee-Poussin sums, II,” Izv. Akad. Nauk SSSR, Ser. Matem.,24 (1960).Google Scholar
  15. 15.
    A. V. Efimov, “The approximation of continuous periodic functions by Fourier sums,” Izv. Akad. Nauk SSSR, Ser. Matem.,24 (1960).Google Scholar
  16. 16.
    V. V. Ivanov, The Theory of Approximate Methods and Its Application to the Numerical Solution of Singular and Integral Equations [in Russian], Naukov Dumka, Kiev (1968).Google Scholar
  17. 17.
    V. V. Ivanov and V. K. Zadiraka, “Some new results in approximation theory,” in: Computer Mathematics, No. 2, Izd. KGU, Kiev (1966).Google Scholar
  18. 18.
    L. V. Kantorovich, “Functional analysis and applied mathematics,” Uspekhi Matem. Nauk,3, No. 6 (28) (1948).Google Scholar
  19. 19.
    L. V. Kantorovich and V. I. Krylov, Approximate Methods of Higher Analysis [in Russian], 4th Edition, Gostekhizdat, Moscow (1952).Google Scholar
  20. 20.
    L. V. Kantorovich and G. P. Akilov, Functional Analysis in Normed Spaces [in Russian], Fizmatgiz, Moscow (1959).Google Scholar
  21. 21.
    E. B. Karpilovskaya, “On the convergence of the collocation method for certain boundary value problems of mathematical physics,” Sibirsk. Matem. Zh.,4, No. 3 (1963).Google Scholar
  22. 22.
    M. F. Kaspshits'kaya, “Ona variant of the collocation method,” Dokl. Akad. Nauk UkrRSR, Ser. A, No. 2 (1967).Google Scholar
  23. 23.
    M. F. Kaspshits'kaya and N. I. Tykalevskaya, “On the question of the convergence of the collocation method,” Ukrainsk. Matem. Zh.,19, No. 4 (1967).Google Scholar
  24. 24.
    M. F. Kaspshits'kaya and A. Yu. Luchka, “On the collocation method,” Zh. Vychisl. Matem. i Matem. Fiz., No. 5 (1968).Google Scholar
  25. 25.
    O. Kis, “On the convergence of the method of coincidence,” Acta Math. Hung.,17, No. 3 (1966).Google Scholar
  26. 26.
    A. Kolmogoroff, “Zur Grössenordnung des Restgliedes Fourierschen Reihen differenzierbarer Funktionen,” Ann. of Mathem.,36, 521–526 (1935).Google Scholar
  27. 27.
    N. P. Korneichuk, “On the best approximation in certain classes of continuous functions,” Dokl. Akad. Nauk SSSR,140 (1961).Google Scholar
  28. 28.
    N. P. Korneichuk, “On the best approximation of continuous functions,” Izv. Akad. Nauk SSSR, Ser. Matem.,27 (1963).Google Scholar
  29. 29.
    H. Lébesque, “Sur les intégrales singulières,” Ann. de Toulouse, I, 25–117 (1909).Google Scholar
  30. 30.
    S. G. Mikhlin and Kh. L. Smolitskii, Approximate Methods of the Solution of Differential and Integral Equations [in Russian], Nauka, Moscow (1965).Google Scholar
  31. 31.
    B. Nagy, “Über gewisse Extremalfragen bei transformierten trigonometrischen Entwicklungen, I.” Periodischer Fall, Berichte der Math. Phys. K1 Akademie d Wiss zu Leipzig, XC, 103–134 (1938).Google Scholar
  32. 32.
    I. P. Natanson, Constructive Theory of Functions [in Russian], Gostekhizdat, Moscow-Leningrad (1949).Google Scholar
  33. 33.
    S. M. Nikol'skii, “On the asymptotic behavior of remainders for the approximation by Féjer sums of functions which satisfy a Lipschitz condition,” Izv. Akad. Nauk SSSR, Ser. Matem.,4, No. 6 (1940).Google Scholar
  34. 34.
    S. M. Nikol'skii, “The approximation of periodic functions by trigonometric polynomials,” Trudy V. A. Steklov Matem. Inst., Akad. Nauk SSSR,15 (1945).Google Scholar
  35. 35.
    S. M. Nikol'skii, “Fourier series of functions with a given modulus of continuity,” Dokl. Akad. Nauk SSSR,52 (1946).Google Scholar
  36. 36.
    S. M. Nikol'skii, “On linear methods of summing Fourier series,” Izv. Akad. Nauk SSSR, Ser. Matem.,12 (1948).Google Scholar
  37. 37.
    V. T. Pinkevich, “On the order of the remainder term of the Fourier series of functions which are differentiable in the sense of Weyl,” Izv. Akad. Nauk SSSR, Ser. Matem.,4 (1940).Google Scholar
  38. 38.
    G. Polya and G. Szego, Problems and Theorems from Analysis [Russian translation], Vol. 2, Gostekhizdat, Moscow (1959).Google Scholar
  39. 39.
    N. I. Pol'skii, “On the convergence of certain approximate methods of analysis,” Ukrainsk. Matem. Zh.,7, No. 1 (1955).Google Scholar
  40. 40.
    I. Radon, “On linear functional transformations,” Uspekhi Matem. Nauk, No. 1 (1936).Google Scholar
  41. 41.
    W. Rogosinski, “Über die Abschnitte trigonometrischer Reihen,” Math. Ann.,95, 110–134 (1925).Google Scholar
  42. 42.
    I. G. Sokolov, “The remainder term of Fourier series of differentiable functions,” Dokl. Akad. Nauk SSSR,103, No. 1 (1955).Google Scholar
  43. 43.
    S. B. Stechkin, “On the best approximation of certain classes of periodic functions by trigonometric polynomials,” Izv. Akad. Nauk SSSR, Ser. Matem.,20 (1956).Google Scholar
  44. 44.
    Sun Yung-sheng, “On the best approximation of periodic differentiable functions by trigonometric polynomials,” Izv. Akad. Nauk SSSR, Ser. Matem.,23 (1959).Google Scholar
  45. 45.
    Sun Yung-sheng, “On the best approximation of periodic differentiable functions by trigonometric polynomials (Part 2),” Izv. Akad. Nauk SSSR, Ser. Matem.,25 (1961).Google Scholar
  46. 46.
    S. A. Telyakovskii, “Conditions of integrability of trigonometric series and their application to the study of methods of summing Fourier series,” Izv. Akad. Nauk SSSR, Ser. Matem.,28 (1964).Google Scholar
  47. 47.
    S. A. Telyakovskii, “The approximation of differentiable functions by Vallee-Poussin sums,” Dokl. Akad. Nauk SSSR,121, No. 30 (1958).Google Scholar
  48. 48.
    F. Tricomi, Integral Equations [Russian translation], IL, Moscow (1960).Google Scholar
  49. 49.
    J. Favard, “Application de la formule sommatoire d'Euler a la demonstration de quelques propriétés extrémales des intégrales des fonctions périodiques ou presque-periodiques,” Matematisk Tidskrift, Kobenhavn, B.H.,4, 81–94 (1936).Google Scholar
  50. 50.
    J. Favard, “Sur l'approximations de fonctions periodiques par des polynomes trigonometriques,” Comptes Rendus Acad. Sci.,203, 1122–1124 (1936).Google Scholar
  51. 51.
    J. Favard, “Sur les meilleurs procédés d'approximation de certaines classes de fonctions par des polynomes trigonometriques,” Bull. de Sci. Math.,61, 209–224; 243–256 (1937).Google Scholar
  52. 52.
    I. Fredholm, “Sur une classe d'equations fonctionnelles,” Acta Math.,27, 365–390 (1903).Google Scholar
  53. 53.
    E. Schmidt, “Zur Theorie der linearen und nichlinearen Integralgleichungen, Zweite. Abhandlung. Auflosung der allgemeinen linearen Intergralgleichung,” Math. Ann.,64, 161–174 (1907).Google Scholar

Copyright information

© Consultants Bureau 1971

Authors and Affiliations

  • V. K. Dzyadyk
    • 1
  1. 1.Institute of MathematicsAcademy of Sciences of the Ukrainian SSRUkraine

Personalised recommendations