Skip to main content
Log in

Linear and nonlinear waves in liquid dielectrics

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

A study is made of linear and nonlinear waves in liquid dielectrics in strong external electric fields. In the case of linear waves, it is assumed that the liquid has bipolar conduction, and allowance is made for recombination of oppositely charged ions. It is shown that two types of wave exist — acoustic and drift. Study of nonlinear waves shows that a solution can exist with stable nonexponential dispersal of a unipolar charged layer in an electric field. The stability of this solution is investigated. The conditions under which nonlinear drift waves can exist are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. G. A. Ostroumov, Interaction of Electric and Hydrodynamic Fields [in Russian], Nauka, Moscow (1979), p. 319.

    Google Scholar 

  2. M. K., Bologa, F. P. Grosu, and I. A. Kozhukhar', Electroconvection and Heat Transfer [in Russian], Shtiintsa, Kishinev (1977), p. 320.

    Google Scholar 

  3. J. R. Melcher, “Electrohydrodynamics,” Magn. Gidrodin., No. 2, 3 (1974).

    Google Scholar 

  4. G. I. Skanavi, Physics of Dielectrics (the Region of Weak Fields) [in Russian], Gostekhizdat, Moscow-Leningrad (1949), p. 500.

    Google Scholar 

  5. A. Nikuradze, Liquid Dielectrics [in Russian], ONTI IKT P SSSR, Moscow-Leningrad (1936), p. 236.

    Google Scholar 

  6. J. R. Melcher and G. I. Taylor, “Electrohydrodynamics — A review of the role of interfacial shear stresses,” Ann. Review of Fluid Mechanics, Vol. 1, Palo Acta (1969).

  7. E. S. Yantovskii and M. S. Anfel'baum, “On the pumping action of a thin high-voltage electrode in a weakly conducting dielectric liquid,” Zh. Tekh. Fiz.,50, 1511 (1980).

    Google Scholar 

  8. Yu. K. Stishkov, “Observation of isothermal convection in the electric field of a planar capacitor,” Elektron. Obrab. Mater., No. 1, 61 (1972).

    Google Scholar 

  9. N. A. Petrichenko, “The pressure accompanying electrohydrodynamic flows in dielectric liquids,” Electron. Obrab. Mater., No. 5, 43 (1979).

    Google Scholar 

  10. N. A. Petrichenko, “The change in the pressure in a dielectric liquid at the tip of a point electrode in the presence of an electric field,” Elektron. Obrab. Mater., No. 6, 35 (1976).

    Google Scholar 

  11. Yu. A. Kopylov, “Electrical conductivity of high-resistivity organic liquids in the case of activated contact processes,” in: Organic Semiconducting Liquids. Proc. Dnepropetrovsk Agricultural Institute, Vol. 27 (1974), pp. 6–35.

    Google Scholar 

  12. I. Adamchevskii, Electrical Conductivity of Liquid Dielectrics [in Russian], Énergiya, Leningrad (1972), p. 296.

    Google Scholar 

  13. L. S. Kazatskaya, L. F. Obernikhina, V. R. Pokryshev, and I. M. Solodovnichenko, “High-voltage polarization of methane with chlorine substitution,” Elektron. Obrab. Mater., No. 3, 53 (1979).

    Google Scholar 

  14. L. S. Kazatskaya, V. R. Pokryshev, and L. F. Obernikhina, “Investigation of relaxation processes in liquid organic semiconductors,” Elektron. Obrab. Mater., No. 4, 56 (1980).

    Google Scholar 

  15. V. G. Levich, Physicochemical Hydrodynamics [in Russian], Izv. AN SSSR, Moscow (1952), p. 538.

    Google Scholar 

  16. I. E. Tarapov, “Fundamental problems of the hydrodynamics of magnetizable and polarizable media,” Author's Abstract of Doctoral Dissertation [in Russian], Dnepropetrovsk (1979), p. 39.

  17. C. Kittel, Introduction to Solid State Physics, Wiley, New York (1966).

    Google Scholar 

  18. L. D. Landau and E. M. Lifshitz, Continuum Mechanics [in Russian], Gostekhizdat, Moscow (1954), p. 795.

    Google Scholar 

  19. V. V. Gogosov and V. A. Polyanskii, “Waves in electrohydrodynamics,” in: Seventh Riga Symposium on Magnetohydrodynamics, Vol. 1 [in Russian], Riga (1972), pp. 227–228.

    Google Scholar 

  20. G. B. Whitham, Linear and Nonlinear Waves, Wiley-Interscience, New York (1974).

    Google Scholar 

  21. N. J. Felici, “Direct current conduction in liquid dielectrics (Pt I),” Direct Current,2, 90 (1971).

    Google Scholar 

  22. T. J. Gallagher, Simple Dielectric Liquids, Mobility, Conduction and Breakdown, Clarendon Press, Oxford (1975), p. 154.

    Google Scholar 

  23. A. B. Vatazhin, “Smoothing of discontinuities of electric charge in electrohydrodynamics by diffusion processes,” Izv. Akad. Nauk SSSR, Mekh. Zhidk, Gaza, No. 1, 59 (1975).

    Google Scholar 

  24. V. A. Buchin, A. B. Vatazhin, and M. B. Pudov, “Electric charging of bodies by the removal from them of charged particles by a hydrodynamic flow,” Izv. Akad. Nauk SSSR, Mekh, Zhidk. Gaza, No. 5, 94 (1977).

    Google Scholar 

  25. T. R. Hewish, “The effects of induced motion on low-stress mobility measurements in liquid dielectrics subjected to charge injection,” Proc. Sixth Int. Conf. Conduct. and Breakdown Dielectr. Liq. Mont.-Saint-Aignan, 24–28 July, Dreux (1978), pp. 341–344.

  26. A. I. Zhakin and I. E. Tarapov, “Instability and flow of a low-conductivity liquid in the presence of oxidation-reduction reactions on the electrodes and recombination,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4, 20 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 98–106, January–February, 1983.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhakin, A.I. Linear and nonlinear waves in liquid dielectrics. Fluid Dyn 18, 78–85 (1983). https://doi.org/10.1007/BF01090513

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01090513

Keywords

Navigation