Journal of Soviet Mathematics

, Volume 23, Issue 6, pp 2642–2707 | Cite as

Modules

  • V. T. Markov
  • A. V. Mikhalev
  • L. A. Skornyakov
  • A. A. Tuganbaev
Article

Abstract

A survey is given of results on modules over rings, covering 1976–1980 and continuing the series of surveys “Modules” in Itogi Nauki.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    K. V. Aganitov, “Hereditary Noetherian primary rings,” Moscow State Univ. (1980), (Manuscript deposited in VINITI, June 12, 1980, No. 2334–80 Dep.)Google Scholar
  2. 2.
    K. V. Agapitov, “Epimorphic images of bounded primary Dedekind rings,” Vestn. Mosk. Gos. Univ., No. 5, 50–53 (1980).Google Scholar
  3. 3.
    S. F. Aleksei and R. K. Kalistru, “Completeness of free topological modules,” Mat. Issled., No. 44 (Kishinev), 164–173 (1977).Google Scholar
  4. 4.
    A. V. Andrunakievich, “Primary modules, primary one-sided ideals, and the Baire radical,” Izv. Akad. Nauk Mold. SSR, No. 2, 12–17 (1976).Google Scholar
  5. 5.
    A. V. Andrunakievich, “Primary one-sided ideals and the structure of rings,” Mat. Issled. (Kishinev), No. 49, 3–10 (1979).Google Scholar
  6. 6.
    A. V. Andrunakievich, “Special modules and special radicals,” Izv. Akad. Nauk Mold. SSR, Ser. Fiz.-Tekh. Mat. Nauk, No. 1, 84–85 (1979).Google Scholar
  7. 7.
    V. A. Andrunakievich, K. K. Krachilov, and Yu. M. Ryabukhin, “Lattice-complemented torsions in algebras over a Noetherian integral domain,” Dokl. Akad. Nauk SSSR,242, No. 5, 985–988 (1978).Google Scholar
  8. 8.
    V. A. Andrunakievich, K. K. Krachilov, and Yu. M. Ryabukhin, “Lattice complemented torsions in algebras over a Noetherian integral domain,” Mat. Sb.,109, No. 1, 3–11 (1979).Google Scholar
  9. 9.
    V. A. Andrunakievich and Yu. M. Ryabukhin, “Complemented and dual torsions,” Dokl. Akad. Nauk SSSR,238, No. 4, 769–772 (1978).Google Scholar
  10. 10.
    V. A. Andrunakievich and Yu. M. Ryabukhin, “Complemented and dual torsions,” Tr. Mat. Inst. im. V. A. Steklova,148, 16–26 (1978).Google Scholar
  11. 11.
    V. A. Andrunakievich and Yu. M. Ryabukhin, Radicals of Algebras and Lattice Theory [in Russian], Nauka, Moscow (1979).Google Scholar
  12. 12.
    V. I. Arnautov, “Extension of the topology of a commutative ring to some of its rings of fractions,” Mat. Issled. (Kishinev), No. 48, 3–13 (1978).Google Scholar
  13. 13.
    Yu. L. Barannik, “Invariants of modules over the p-adic integral group ring of a group of type p,” Dokl. Akad. Nauk Ukr.SSR, A, No. 11, 963–965 (1977).Google Scholar
  14. 14.
    Yu. L. Barannik and P. M. Gudivok, “Crossed group rings of finite groups and rings of p-adic integers with a finite number of indecomposable integral representations,” Mat. Sb.,108, No. 2, 187–211 (1979).Google Scholar
  15. 15.
    K. I. Beidar, “Rings of fractions of semiprimary rings,” Vestn. Mosk. Gos. Univ., Mat. Mekh., No. 5, 36–43 (1978).Google Scholar
  16. 16.
    K. I. Beidar, “Classical rings of fractions of PI-algebras,” Usp. Mat. Nauk,33, No. 6, 197–198 (1978).Google Scholar
  17. 17.
    K. I. Beidar, “Rings with generalized identities. III,” Vestn. Mosk. Gos. Univ., Mat., Mekh., No. 4, 66–73 (1978).Google Scholar
  18. 18.
    A. U. Belesov, “Injective and equationally compact modules,” Izv. Akad. NaukKaz.SSR, Ser. Fiz.-Mat., No. 1, 85–86 (1976).Google Scholar
  19. 19.
    G. M. Brodskii and A. G. Grigoryan, “Rings of endomorphisms of modules,” Dokl. Akad. Nauk Arm. SSR,69, No. 1, 15–18 (1979).Google Scholar
  20. 20.
    I. D. Bunu, “Concept of injectivity in the category of modules. Rings and modules,” Mat. Issled., No. 38, (Kishinev), 71–85 (1976).Google Scholar
  21. 21.
    I. D. Bunu, “(ρ, σ)-injectivity in modules. Rings and modules,” Mat. Issled., No. 38, Kishinev, 86–96 (1976).Google Scholar
  22. 22.
    I. D. Bunu, “Comparison of some concepts of injectivity in modules,” Mat. Issled., No. 48, Kishinev, 14–23 (1978).Google Scholar
  23. 23.
    I. D. Bunu, “Left QI-rings,” Mat. Issled., No. 49, Kishinev, 23–34 (1979).Google Scholar
  24. 24.
    I. D. Bunu and E. I. Tebyrtse, “Lattice of pretorsions and classically semisimple rings,” Mat. Issled., No. 49, Kishinev, 35–39 (1979).Google Scholar
  25. 25.
    L. N. Vasershtein and A. A. Suslin, “Serre's problem on protective modules over polynomial rings and algebraic K-theory,” Izv. Akad. Nauk SSSR,40, No. 5, 993–1054 (1976).Google Scholar
  26. 26.
    E. M. Vechtomov, “Projective and injective ideals of rings of continupus fonctions,” in: Abelian Groups and Modules [in Russian], Tomsk (1980), pp. 19–30.Google Scholar
  27. 27.
    E. M. Vechtomov, “Pure ideals of rings of continuous functions,” in: Contemporary Algebra [in Russian], Leningrad (1978), pp. 29–37.Google Scholar
  28. 28.
    N. I. Vishnyakova, “Modules over a class of local Noetherian rings,” Latv. Mat. Ezhegodn.,18, 3–18 (1976).Google Scholar
  29. 29.
    M. I. Vodinchar, “Algebraic radicals and radically semisimple classes of topological modules,” Mat. Issled., No. 53, Kishinev, 43–53 (1979).Google Scholar
  30. 30.
    A. I. Generalov, “Weak and ω-high purities in the category of modules,” Mat. Sb.,105, No. 3, 389–402 (1978).Google Scholar
  31. 31.
    A. I. Generalov, “Axiomatic description of weak purities in the category of modules,” Mat. Sb.,109, No. 1, 80–92 (1979).Google Scholar
  32. 32.
    V. N. Gerasimov, “Generating homomorphisms of rings,” Algebra Logika: (Novosibirsk),18, No. 6, 648–663 (1978).Google Scholar
  33. 33.
    S. T. Glavatskii, “Topological quasifrobenius modules,” Moscow State Univ. (1978) (Manuscript deposited in VINITI, July 20, 1978, No. 2448-78 Dep).Google Scholar
  34. 34.
    S. T. Glavatskii, “Topological quasifrobenius modules. II,” Moscow State Univ. (1978) (Manuscript deposited in VINITI, October 31, 1978, No. 3411-78 Dep).Google Scholar
  35. 35.
    S. T. Glavatskii, “Topological quasiinjective and quasiprojective modules,” Moscow State Univ. (1978), (Manuscript deposited in VINITI, October 31, 1978, No. 3412-78 Dep).Google Scholar
  36. 36.
    S. T. Glavatskii, “Topological quasiinjective and quasiprojective modules,” in: Abelian Groups and Modules [in Russian], Tomsk (1980), pp. 31–44.Google Scholar
  37. 37.
    V. E. Govorov, “Associativity formulas,” Usp. Mat. Nauk,32, No. 6, 215–216 (1977).Google Scholar
  38. 38.
    Yu. O. Golovin and A. Ya. Khelemskii, “Homological dimension of certain modules over a tensor product of Banach algebras,” Vestn. Mosk. Gos. Univ., No. 1, 54–61 (1977).Google Scholar
  39. 39.
    E. L. Gorbachuk and N. Ya. Komarnitskii, “Radical filters in principal ideal domains,” Dokl. Akad. Nauk Ukr.SSR, No. 2, 103–104 (1977).Google Scholar
  40. 40.
    E. L. Gorbachuk and N. Ya. Komarnitskii, “S-torsion in modules,” Vissik L'viv. Un-tu, No. 12, 32–34 (1977).Google Scholar
  41. 41.
    E. L. Gorbachuk and N. Ya. Komarnitskii, “I-radicals and their properties,” Ukr. Mat. Zh.,30, No.2, 212–217 (1978).Google Scholar
  42. 42.
    E. L. Gorbachuk and N. Ya. Komarnitskii, “Decomposability of countably-generated torsions,” Visnik L'viv. Un-tu, No. 13, 35–37 (1978).Google Scholar
  43. 43.
    I. M. Godn, “Isolated components of submodules,” Mat. Issled., No, 49, Kishinev, 54–60 (1979).Google Scholar
  44. 44.
    I. M. Godn and I. D. Kitoroage, “Infinite intersections of primary submodules,” Mat. Issled., No. 48, Kishinev, 40–47 (1978).Google Scholar
  45. 45.
    I. M. Godn and I. D. Kitoroage, “Closures of ideals and primary decompositions,” Mat. Issled., No. 49, Kishinev, 61–67 (1979).Google Scholar
  46. 46.
    A. G. Grigoryan, “Flat functors and regular categories,” Aikakan SSR Gigutyunneri Akademia Zekuitsner. Dokl. Akad. Nauk Arm.SSR,62, No. 2, 65–71 (1976).Google Scholar
  47. 47.
    N. M. Gubareni, “Semiperfect right hereditary rings of bounded-modulus type,” Inst. Mat. Akad. Nauk Ukr. SSR, Preprint No. 1 (1978).Google Scholar
  48. 48.
    N. M. Gubareni, “Right hereditary rings of bounded-modulus type,” in: Theoretical and Applied Questions of Differential Equations and Algebra [in Russian], Kiev (1978), pp. 80–84.Google Scholar
  49. 49.
    N. M. Gubareni, Yu. A. Drozd, and V. V. Kirichenko, “Right-serial rings,” Inst. Elektrodinamiki Akad. Nauk SSSR. IED Akad. NaukUkr.SSR, Preprint, 110, Kiev (1975).Google Scholar
  50. 50.
    N. M. Gubareni and V. V. Kirichenko, “Structure of semiperfect right Noetherian and right hereditary primary rings,” in: Mathematical Papers Kiev [in Russian], Naukova Dumka (1976), pp. 18–22.Google Scholar
  51. 51.
    G. A. Dzhavadov, “Differential-difference rings and modules of finitely generated type and the Jacobson differential-difference radical,” Dagestan. Gos. Pedagog. Inst. Makhachkala (1979) (Manuscript deposited in VINITI, June 6, 1979, No. 1993-79 Dep).Google Scholar
  52. 52.
    G. A. Dzhavadov, “The Hilbert characteristic polynomial for differential-difference modules and its applications,” Dagestan. Gos. Pedagog Inst. Makhachkala (1979) (Manuscript deposited in VINITI, June 6, 1979, No. 1992-79 Dep).Google Scholar
  53. 53.
    Yu. B. Dobrusin, “Modules over Dedekind commutative integral domains, similar to algebraically compact ones,” Tomsk. Un-t., Tomsk (1979) (Manuscript deposited in VINITI, December 13, 1979, No. 4237-79 Dep).Google Scholar
  54. 54.
    O. I. Domanov, “Perfect semigroup rings,” Sib. Mat. Zh.,18, No. 2, 294–303 (1977).Google Scholar
  55. 55.
    M. M. Drogomizhs'ka, Visnik L'viv. Politekh. Inst., No. 119, 39–41, 185 (1977).Google Scholar
  56. 56.
    Yu. A. Drozd, “Tame and wild matrix problems,” in: Representations and Quadratic Forms [in Russian], Kiev (1979), pp. 39–74.Google Scholar
  57. 57.
    Yu. A. Drozd, “Structure of hereditary rings,” Mat. Sb.,113, No. 1, 161–172 (1980).Google Scholar
  58. 58.
    N. I. Dubrovin, “Maximal orders in a simple central finite-dimensional algebra over a valued ring of height 1,” Mat. Sb.,108, No. 4, 517–528 (1979).Google Scholar
  59. 59.
    V. P. Elizarov, “Rings of fractions,” in: Rings and Modules. Mathematical Investigations [in Russian], Vol. 38, Kishinev (1976), pp. 132–149.Google Scholar
  60. 60.
    K. A. Zhevlakov, A. M. Slin'ko, I. P. Shestakov, and A. I. Shirshov, Rings, Close to Associative [in Russian], Nauka, Moscow (1978).Google Scholar
  61. 61.
    Z. P. Zhilinskaya, “Isomorphism of pairs of finitely generated modules,” in: Materials of the Twenty-Ninth Scientific Conference of the Professorial-Instructorial Staff of Uzhgorod University, Section of Mathematical Sciences [in Russian], Uzhgorod Univ. (1975), pp. 130–138 (Manuscript deposited in VINITI, March 10, 1976, No. 705–76 Dep),Google Scholar
  62. 62.
    A. V. Zhozhikashvili, “Equivalences of categories of affine modules,” Mat. Zametki,24, No.4, 475–486 (1978).Google Scholar
  63. 63.
    A. G. Zavadskii and V. V. Kirichenko, “Torsion-free modules over primary rings,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Akad. Nauk SSSR,57, 100–116 (1976).Google Scholar
  64. 64.
    A. G. Zavadskii and V. V. Kirichenko, “Semimaximal rings of finite type,” Mat. Sb.,103, No. 3, 323–345 (1977).Google Scholar
  65. 65.
    V. K. Zakharov, “Regular completion of modules,” Mat. Zametki,19, No. 6, 843–851 (1976).Google Scholar
  66. 66.
    V. K. Zakharov, “Orthocomplementation of modules, rings, and Boolean algebras,” in: Ordered Sets and Lattices [in Russian], Vol. 4, Saratov Univ. (1977), pp. 48–61.Google Scholar
  67. 67.
    V. K. Zakharov, “Divisible hull and Orthocomplementation of lattice-ordered modules,” Mat. Sb.,103, No. 3, 346–357 (1977).Google Scholar
  68. 68.
    V. K. Zakharov, “Functional representation of the orthocomplement and divisible hull of torsion-free Utumi modules,” Mat. Zametki,27, No. 3, 333–344 (1980).Google Scholar
  69. 69.
    A. V. Ivanov, “ω-divisible and ω-flat modules,” Mat. Zametki,24, No. 6, 741–747 (1978).Google Scholar
  70. 70.
    V. P. Ivanov, “Isomorphism of simple modules with equal annihilators for certain classes of rings,” Inst. Teor. Eksp. Fiz., Moscow, Preprint.Google Scholar
  71. 71.
    R. K. Kalistru, “Completeness of a free topological module, generated by a discrete space,” Mat. Issled. (Kishinev),53, 98–102 (1979).Google Scholar
  72. 72.
    A. I. Kashu, “Bicommutators of completely divisible modules,” Mat. Sb.,100, No. 4, 483–494 (1976).Google Scholar
  73. 73.
    A. I. Kashu, “Preradicals in the situation of conjugacy,” Mat. Issled. (Kishinev), No. 48, 48–64 (1978).Google Scholar
  74. 74.
    V. V. Kirichenko, “Generalized-uniserial rings,” Preprint IM-75-1, Izd. Inst. Mat. Akad. Nauk Ukr. SSR, Kiev (1975).Google Scholar
  75. 75.
    V. V. Kirichenko, “Generalized-uniserial rings,” Vestn. Mosk. Gos. Univ., No. 3, 126 (1977).Google Scholar
  76. 76.
    V. V. Kirichenko, “Quasifrobenius rings and Gorenstein orders,” Tr. Mat. Inst. im. V. A. Steklova,148, 168–174 (1978).Google Scholar
  77. 77.
    V. V. Kirichenko, “Classification of pairs of mutually annihilating operators in a graded space and representations of dyads of generalized uniserial algebras,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Akad. Nauk SSSR,75, 91–109 (1978).Google Scholar
  78. 78.
    A. V. Klyushin, “Topological Jacobson radicals and topological semiperfect rings,” Moscow State Univ. (1978) (Manuscript deposited in VINITI, June 20, 1978, No. 2447-78 Dep).Google Scholar
  79. 79.
    A. V. Klyushin, “Open Noetherian rings,” Vestn. Mosk. Gos. Univ., Mat. Mekh., No. 5, 48–57 (1979).Google Scholar
  80. 80.
    B. B. Kovalenko, “Generalized modules over inverse semirings,” in: Ordered Sets and Lattices [in Russian], No. 5, Saratov (1978), pp. 55–62.Google Scholar
  81. 81.
    B. B. Kovalenko, “Generalized modules,” in: Studies in Algebra [in Russian], Vol. 5, Saratov (1977), pp. 30–42.Google Scholar
  82. 82.
    I. B. Kozhukhov, “Self-injective semigroup rings,” Mosk. Inst. Elektron. Tekh., Moscow (1978) (Manuscript deposited in VINITI, July 26, 1979, No. 2843-79 Dep).Google Scholar
  83. 83.
    L. A. Koifman, “Decomposability of torsions over commutative rings,” Usp. Mat. Nauk,31, No. 2, 215–216 (1976).Google Scholar
  84. 84.
    L. A. Koifman, “Decomposability of torsion over commutative rings,” Tr. Mosk. Mat. O-va,37, 143–171 (1978).Google Scholar
  85. 85.
    N. Ya. Komarnitskii, “Duo-rings, over which all torsions are S-torsions,” Mat. Issled. (Kishinev), No. 48, 65–68 (1978).Google Scholar
  86. 86.
    N. Ya. Komarnitskii, Kiev (1978), pp. 19–21.Google Scholar
  87. 87.
    P. Cohn, Free Rings and Their Relations [Russian translation], Mir, Moscow (1975).Google Scholar
  88. 88.
    K. K. Krachilov, “Coatoms of the lattice of special radicals,” Mat. Issled. (Kishinev), No. 49, 80–86 (1979).Google Scholar
  89. 89.
    K. K. Krachilov, “Complementation in the lattice of hypernilpotent radicals,” Mat. Issled. (Kishinev), No. 49, 87–104 (1979).Google Scholar
  90. 90.
    S. S. Kutateladze, “Modules admitting convex analysis,” Dokl. Akad. Nauk SSSR,252, No. 4, 789–791 (1980).Google Scholar
  91. 91.
    A. B. Levin, “Characteristic polynomials of difference modules and some properties of the difference dimension,” Moscow State Univ. (1980) (Manuscript deposited in VINITI, May 30, 1980, No. 2175-80 Dep).Google Scholar
  92. 92.
    A. B. Levin, “Characteristic polynomials of filtered difference modules and extensions of difference fields,” Usp. Mat. Nauk,33, No. 3, 177–178 (1978).Google Scholar
  93. 93.
    Z. A. Lykova, “Conditions for projectivity of Banach algebras of completely continuous operators,” Vestn. Mosk. Gos. Univ., No. 4, 8–13 (1979).Google Scholar
  94. 94.
    A. Sh. Maibalaev, “Definition of an injective module,” in: Algebra and Number Theory [in Russian], Alma-Ata (1978), pp. 25–29.Google Scholar
  95. 95.
    A. A. Manovtsev, “Additive purities in the category of A-modules and the functorω,” in: Proceedings of the Twenty-Seventh Scientific—Technical Conference of the Moscow Institute of Radio Engineering, Electronics, and Automation [in Russian], Moscow (1978), pp. 89–95 (Manuscript deposited in VINITI, March 22, 1979, No. 1014-79 Dep).Google Scholar
  96. 96.
    A. P. Mishina, “Abelian groups,” in: Algebra. Topology. Geometry [in Russian], Vol. 17, Itogi Nauki i Tekh. VINITI Akad. Nauk SSSR, Moscow (1979), pp. 3–63.Google Scholar
  97. 97.
    A. V. Mikhalev, “Rings of endomorphisms of modules and lattices of submodules,” in: Algebra. Topology. Geometry [in Russian], Vol. 12, Itogi Nauki i Tekh. VINITI Akad. Nauk SSSR, Moscow (1974), pp. 51–76.Google Scholar
  98. 98.
    A. V. Mikhalev and E. V. Pankrat'ev, “Differential polynomial dimension of a system of differential equations,” in: Algebra [in Russian], Moscow State Univ. (1980), pp. 57–67.Google Scholar
  99. 99.
    A. V. Mikhalev and L. A. Skirnyakov, “Modules,” in: Algebra. Topology. Geometry (1968) [in Russian], Itogi Nauki i Tekh. VINITI Akad. Nauk SSSR, Moscow (1970), pp. 57–100.Google Scholar
  100. 100.
    A. V. Mikhalev and L. A. Skirnyakov (ed.), “Modules,” Akad. Nauk SSSR Sib. ad. Inst. Mat. Preprint, Novosibirsk (1973).Google Scholar
  101. 101.
    “Research seminar on algebra,” Vestn. Mosk. Gos. Univ., Mat., Mekh., No. 6, 96–101 (1979).Google Scholar
  102. 102.
    “Research seminar on algebra,” Mosk. Gos. Univ., Mat., Mekh., No. 3, 101–105 (1980).Google Scholar
  103. 103.
    “Research seminar on algebra,” Vestn. Mosk. Gos. Univ., Mat., Mekh., No. 4, 90–97 (1980).Google Scholar
  104. 104.
    “Research seminar on algebra,” Vestn. Mosk. Gos. Univ., Mat. Mekh., No. 1, 97–100 (1981).Google Scholar
  105. 105.
    N. Nachev, Nauchn. Tr. Plovdiv. Un-t. Mat.,13, No. 1, 65–79 (1975 (1977)).Google Scholar
  106. 106.
    A. M. Pachkoriya, “Extensions of submodules,” Sakartvelos SSR Metsnierebata Akademiis Moambe, Soobshch. Akad. Nauk Gruz.SSR,84, No. 3, 545–548 (1976).Google Scholar
  107. 107.
    A. I. Ponomarev, “τ-classical semisimplicity of a ring R,” Mosk. Gos. Pedagog. Inst., Moscow (1976) (Manuscript deposited in VINITI, April 30, 1976, No. 1481-76 Dep).Google Scholar
  108. 108.
    A. I. Ponomarev, “Category of n-modules,” in: Modern Algebra [in Russian], Vol. 5, Leningrad (1976), pp. 102–106.Google Scholar
  109. 109.
    A. I. Ponomarev, “Rings, regular with respect to torsions,” in: Algebraic Systems [in Russian], Ivanovo (1978), pp. 61–80.Google Scholar
  110. 110.
    A. I. Ponomarev, “Regular pretorsions,” Mat. Zametki,25, No. 1, 27–35 (1979).Google Scholar
  111. 111.
    V. A. Ratinov, “Semiperfect rings with commutative Jacobson radical,” Mosk. Gos. Pedagog. Inst. im. V. I. Lenina, Moscow (1978) (Manuscript deposited in VINITI October 12, 1978, No. 3215-78 Dep),Google Scholar
  112. 112.
    V. A. Ratinov, “Structure of semiperfect rings with commutative Jacobson radical,” Mat. Sb.,110, No. 3, 459–470 (1979).Google Scholar
  113. 113.
    V. B. Repnitskii, “Arithmetic modules,” Mat. Sb.,110, No. 1, 150–157 (1979).Google Scholar
  114. 114.
    Yu. V. Roganov, “Hereditariness of the tensor algebra and semihereditariness of the completion of the tensor algebra,” Dokl. Akad. Nauk Ukr.SSR, A, No. 5, 410–413 (1977).Google Scholar
  115. 115.
    I. Z. Rozenknop, “Isomorphisms of modules with monomial filtration,” Mosk. O-va Pedagog. Inst. (1977) (Manuscript deposited in VINITI, November 17, 1977, No. 645-77 Dep).Google Scholar
  116. 116.
    S. K. Rososhek, “Torsion-free modules over semihereditary primary Goldie rings,” in: Groups and Modules [in Russian], Tomsk (1976), pp. 57–69.Google Scholar
  117. 117.
    S. K. Rososhek, “Periodic modules over noncommutative Dedekind primary rings,” Sib. Mat. Zh., Novosibirsk (1977) (Manuscript deposited in VINITI, January 4, 1977, No. 52–77 Dep).Google Scholar
  118. 118.
    S. K. Rososhek, “Purely correct modules,” Usp. Mat. Nauk,33, No. 3, 176 (1978).Google Scholar
  119. 119.
    S. K. Rososhek, “Correctness of modules,” I/v. Vyssh. Uchebn. Zaved. Mat., No. 10, 77–82 (1978).Google Scholar
  120. 120.
    S. K. Rososhek, “Correct and purely correct modules,” in: Abelian Groups and Modules [in Russian] (1979), pp. 127–142.Google Scholar
  121. 121.
    Yu. M. Ryabukhin and K. K. Krachilov, “Lattice complemented torsions in algebras,” Mat. Issled. (Kishinev), No. 48, 94–111 (1978).Google Scholar
  122. 122.
    Yu. M. Ryabukhin and R. S. Florya, “Atomicity of the ‘lattice’ of hereditary annihilators of torsions,” Mat. Issled. (Kishinev), No. 49, 115–121 (1979).Google Scholar
  123. 123.
    N. A. Ryatova, “Conditions for the elementary equivalence of modules over a discrete valued ring,” Mosk. Gos. Pedagog. Inst., Moscow (1977) (Manuscript deposited in VINITI, July 21, 1977, No. 2991-77 Dep).Google Scholar
  124. 124.
    I. I. Sakhaev, “Finite generation of projective modules,” Izv. Vyssh. Uchebn. Zaved., No. 9, 69–79 (1977).Google Scholar
  125. 125.
    Yu. V. Selivanov, “Projectivity of certain Banach modules and the structure of Banach algebras,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 5, 85 (1976); No. 1, 110–116 (1978).Google Scholar
  126. 126.
    Yu. V. Selivanov, “Biprojective Banach algebras, their structure, and the connection with kernel operators,” Funkts. Anal. Prilozhen.,10, No. 1, 80–90 (1976).Google Scholar
  127. 127.
    Yu. V. Selivanov, “Biprojective Banach algebras,” Izv. Akad. Nauk SSSR, Ser. Mat.,43, No. 5, 1159–1174 (1979).Google Scholar
  128. 128.
    E. G. Sklyarenko, “Pure and finitely represented duality homomorphisms and the property of correctness of a ring,” Mat. Sb.,105, No. 2, 192–206 (1978).Google Scholar
  129. 129.
    E. G. Sklyarenko, “Relative homological algebra in the category of modules,” Usp. Mat. Nauk,33, No. 3, 85–120 (1978).Google Scholar
  130. 130.
    L. A. Skornyakov, “Modules,” in: Algebra. Topology. 1962 [in Russian], Itogi Nauki. VINITI Akad. Nauk SSSR, Moscow (1963), pp. 80–89.Google Scholar
  131. 131.
    L. A. Skornyakov, “Modules,” in: Algebra. Topology. Geometry. 1965 [in Russian], Itogi Nauki. VINITI Akad. Nauk SSSR, Moscow (1967), pp. 181–216.Google Scholar
  132. 132.
    L. A. Skornyakov, “Decomposability of modules into a direct sum of ideals,” Mat. Zametki,20, No. 2, 187–193 (1976).Google Scholar
  133. 133.
    L. A. Skornyakov, “Commutative rings and subidempotent ideals,” Mat. Sb.,102, No. 2, 280–288 (1977).Google Scholar
  134. 134.
    L. A. Skornyakov, “Axiomatizability of the class of injective polygons,” Tr. Sem. im. I. G. Petrovskogo, Mosk. Gos. Univ., No. 4, 233–239 (1978).Google Scholar
  135. 135.
    L. A. Skornyakov, “Finite axiomatizability of the class of faithful modules,” Coll. Math.,42, 365–366 (1979).Google Scholar
  136. 136.
    L. A. Skornyakov, “A condition of Andrunakievich-Ryabukhin,” Mat. Issled., Kishinev “Shtiintsa,” Vol. 44, 174–176 (1977).Google Scholar
  137. 137.
    L. A. Skornyakov and A. V. Mikhalev, “Modules,” in: Algebra. Topology. Geometry [in Russian], Vol. 14, Itogi Nauki i Tekh. VINITI Akad. Nauk SSSR, Moscow (1976), pp. 57–190.Google Scholar
  138. 138.
    A. A. Suslin, “Stably free modules,” Mat. Sb.,102, No. 4, 537–550 (1977).Google Scholar
  139. 139.
    A. A. Suslin, “Cancellation theorem for projective modules over algebras,” Dokl. Akad. Nauk SSSR,236, No. 4, 808–811 (1977).Google Scholar
  140. 140.
    A. A. Suslin, “Structure of projective modules over polynomial rings in the case of noncommutative ring of coefficients,” Tr. Mat. Inst. im. V. A. Steklova,148, 233–252 (1978).Google Scholar
  141. 141.
    N. P. Titov, “Coherence of natural isomorphisms in categories of algebras and modules,” Editorial Board of Sib. Mat. Zh., Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1979) (Manuscript deposited in VINITI, October 4, 1979, No. 3470-79 Dep).Google Scholar
  142. 142.
    I. D. Trendafilov, “Integrally closed modules,” Godishn. Vissh. Uchebn. Zaved.,13, No. 2, 29–34 (1978).Google Scholar
  143. 143.
    A. A. Tuganbaev, “Slightly projective modules,” Sib. Mat. Zh.,21, No. 5, 109–113 (1980).Google Scholar
  144. 144.
    A. A. Tuganbaev, “Modules close to injective,” Usp. Mat. Nauk,32, No. 2, 233–234 (1977).Google Scholar
  145. 145.
    A. A. Tuganbaev, “Modules over hereditary Noetherian primary rings,” Usp. Mat. Nauk,32, No. 4, 267–268 (1977).Google Scholar
  146. 146.
    A. A. Tuganbaev, “Quasiprojective modules,” Sib. Mat. Zh.,21, No. 3, 177–183 (1980).Google Scholar
  147. 147.
    A. A. Tuganbaev, “Structure of modules close to injective,” Sib. Mat. Zh.,18, No. 4, 890–898 (1977).Google Scholar
  148. 148.
    A. A. Tuganbaev, “Quasiinjective and slightly injective modules,” Vestn. Mosk. Gos. Univ., Mat., Mekh., No. 2, 61–64 (1977).Google Scholar
  149. 149.
    A. A. Tuganbaev, “Structure of modules close to protective,” Mat. Sb.,106, No. 4, 554–565 (1978).Google Scholar
  150. 150.
    A. A. Tuganbaev, “Pseudoinjective modules and extension of automorphisms,” Tr. Sem. im. I. G. Petrovskogo, Mosk. Gos. Univ., No. 4, 241–248 (1978).Google Scholar
  151. 151.
    A. A. Tuganbaev, “Characterizations of rings, using slightly injective and slightly projective modules,” Vestn. Mosk. Gos. Univ., No. 3, 48–51 (1979).Google Scholar
  152. 152.
    A. A. Tuganbaev, “Slightly projective modules,” Vestn. Mosk. Gos. Univ., No. 5, 43–47 (1979).Google Scholar
  153. 153.
    A. A. Tuganbaev, “Self-injective rings,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 12, 71–74 (1980).Google Scholar
  154. 154.
    A. A. Tuganbaev, “Rings, all of whose quotient rings are slightly injective,” Usp. Mat. Nauk,35, No.2, 223–224 (1980).Google Scholar
  155. 155.
    A. A. Tuganbaev, “Rings, over which each module is a direct sum of distributive modules,” Vestn. Mosk. Gos. Univ., No. 1, 61–64 (1980).Google Scholar
  156. 156.
    A. A. Tuganbaev, “Distributive Noetherian rings,” Vestn. Mosk. Gos. Univ., No. 2, 287–290 (1980).Google Scholar
  157. 157.
    A. A. Tuganbaev, “Distributive modules,” Usp. Mat. Nauk,35, No. 5, 245–246 (1980).Google Scholar
  158. 158.
    E. I. Tebyrtse, “Simple torsions of the category of modules,” Mat. Issled. (Kishinev),44, 104–108 (1977).Google Scholar
  159. 159.
    L. V. Tyukavkin, “Commutative subrings with flat modules,” Vestn. Mosk. Gos. Univ., No. 5, 60–62 (1978).Google Scholar
  160. 160.
    L. V. Tyukavkin, “Axiomatizability of the class of irreducible modules,” Moscow State Univ. (1980) (Manuscript deposited in VINITI, May 30, 1980, No. 2174–80 Dep).Google Scholar
  161. 161.
    C. Faith, Algebra: Rings, Modules, and Categories [Russian translation], Vol. 1, 2, Mir, Moscow (1977).Google Scholar
  162. 162.
    G. L. Fel'dman, “Global dimensions of general rings of differential operators,” Usp. Mat. Nauk,29, No. 5, 245–246 (1974).Google Scholar
  163. 163.
    L. Fuchs, Infinite Abelian Groups, Vol. 2, Academic Press (1973).Google Scholar
  164. 164.
    V. K. Kharehenko, “Actions of groups and Lie algebras on noncommutative rings,” Usp. Mat. Nauk,35, No. 2, 67–90 (1980).Google Scholar
  165. 165.
    A. Ya. Khelemskii, “Lowest values assumed by the global homological dimension of functional Banach algebras,” Tr. Seminara im. I. G. Petrovskogo Mosk. Gos. Univ., No. 3, 223–242 (1978).Google Scholar
  166. 166.
    I. P. Shestakov, “Irreducible representations of alternative algebras,” Mat. Zametki,26, No. 5, 673–686 (1979).Google Scholar
  167. 167.
    Third All-Union Symposium on Theory of Rings, Algebras and Modules. Abstracts of Discussions [in Russian], Tartus. Un-t, Inst. Mat. Sib. Otd. Akad. Nauk SSSR, Mosk. Univ., Tartu (1976).Google Scholar
  168. 168.
    Fourth All-Union Symposium on Theory of Rings, Algebras, and Modules [in Russian], Inst. Mat. Vychisl. Tsentrom Akad. Nauk Mold. SSR, Kishinev (1980).Google Scholar
  169. 169.
    Fourteenth All-Union Algebraic Conference. Abstracts of Reports. Part I. Groups. Algebraic Systems. Part II. Rings. Algebraic Systems [in Russian], Inst. Mat. Sib. Otd. Akad. Nauk SSSR, Novosibirskii. Gos. Univ., Novosibirsk (1977).Google Scholar
  170. 170.
    Fifteenth All-Union Algebraic Conference, July 3–6, 1979. Abstracts of Reports [in Russian], Minvyz RSFSR, Krasnoyarsk. Gos. Univ., Inst. Mat. Sib. Otd. Akad. Nauk SSSR, Vych. Tsentr. Sib. Otd. Akad. Nauk SSSR, Part I, Groups, Part II, Rings. Algebraic Systems, Krasnoyarsk (1979).Google Scholar
  171. 171.
    L. Abellanas and L. M. Alonsi, “On the Gelfand—Kirillov conjecture,” Commun. Math. Phys.,43, No. 1, 69–71 (1975).Google Scholar
  172. 172.
    V. K. Agrawala and Chong-Yun Chao, “Equalities and inequalities for ranks of modules,” Linear Multilinear Algebra,6, No. 4, 307–315 (1978).Google Scholar
  173. 173.
    J. Ahsan, “A note on direct sums of quasiinjective modules,” Punjab Univ. J. Math. (Lahore),7, 39–43 (1974).Google Scholar
  174. 174.
    J. Ahsan, “Modules over qc-rings,” Stud. Sci. Math. Hungar.,9, Nos. 3–4, 321–325 (1974).Google Scholar
  175. 175.
    J. Ahsan, “Rings, all of whose ideals are finitely embedded,” Stud. Sci. Math. Hungar.,9, Nos. 3–4, 327–330 (1974).Google Scholar
  176. 176.
    J. Ahsan, “A note on rings all of whose semisimple cyclic modules are quasiinjective,” Atti Accad. Naz.-Lincei Rend. Cl. Sci. Fis., Mat. Natur.,59, No. 6, 682–684 (1975).Google Scholar
  177. 177.
    J. Ahsan, “Homomorphic images of certain quasiinjective modules,” Boll. Unione Mat. Ital.,13A, No. 1, 101–109 (1976).Google Scholar
  178. 178.
    J. Ahsan, “Completely hereditary rings,” Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis., Mat. Natur.,63, Nos. 3–4, 159–163 (1977(1978)).Google Scholar
  179. 179.
    J. Ahsan, “Semilocal rings andσ-cyclic modules,” Math. Jpn.,25, No. 1, 117–124 (1980).Google Scholar
  180. 180.
    J. Ahsan, “Semilocal rings and quasiprojective modules,” Recz. Pil. Tow. Mat.,21, No. 1, 5–7 (1980).Google Scholar
  181. 181.
    S. Alamelu, “On quasiinjective modules over Noetherian rings,” J. Indian Math. Soc.,39, Nos. 1–4, 121–130 (1975).Google Scholar
  182. 182.
    V. Albis-Gonzalez and R. K. Markanda, “Ordres Euclidiens d'algèbres arithmétiques,” C. R. Acad. Sci.,284, No. 23, A1485-A1486 (1977).Google Scholar
  183. 183.
    V. Albis-Gonzalez and R. K. Markanda, “Rings of fractions of Euclidean rings,” Commun. Algebra,6, No. 4, 353–360 (1978).Google Scholar
  184. 184.
    T. Albu, “Sur la dimension de Gabriel des modules,” in: Algebra-Berichte. Bericht Nr. 21, Verlag Uni-Druck, München (1974), pp. 1–27.Google Scholar
  185. 185.
    T. Albu and C. Nastasescu, “Modules sur les anneaux de Krull,” Rev. Roum. Math. Pures Appl.,21, No. 2, 133–142 (1976).Google Scholar
  186. 186.
    J. L. Alperin, “Diagrams for modules,” J. Pure Appl. Algebra,16, No. 2, 111–119 (1980).Google Scholar
  187. 187.
    J. L. Alvarez, “Operadores de derivacion diferenciacion en modulos,” Gac. Mat.,27, Nos. 5–6, 130–135 (1975).Google Scholar
  188. 188.
    I. Amin, “Note on generalized semigroups and rings,” Proc. Math. Soc. Egypt, No. 45, 9–17 (1978).Google Scholar
  189. 189.
    S. A. Amitsur and L. W. Small, “Polynomial over division rings,” Isr. J. Math.,31, Nos. 3–4, 353–358 (1978).Google Scholar
  190. 190.
    D. D. Anderson, “Artinian modules are countably generated,”38, No. 1, 5–6 (1977).Google Scholar
  191. 191.
    D. D. Anderson, “The existence of dual modules,” Proc. Am. Math. Soc.,55, No. 2, 258–260 (1976).Google Scholar
  192. 192.
    D. F. Anderson, “Projective modules over subrings of k[X, Y],” Trans. Am. Math. Soc.,240, 317–328 (1978).Google Scholar
  193. 193.
    D. F. Anderson, “The Chinese remainder theorem and the invariant basis property,” Can. Math. Bull.,21, No. 3, 361–362 (1978).Google Scholar
  194. 194.
    D. F. Anderson, “Projective modules over subrings of k[x, y] generated by monomials,” Pac. J. Math.,79, No. 1, 5–17 (1978).Google Scholar
  195. 195.
    F. W. Anderson, “Simple injective modules,” Math. Scand.,43, No. 2, 204–240 (1978).Google Scholar
  196. 196.
    V. A. Andrunakievic, Ju. M. Rjabuhin, K. K. Kracilov, and E. I. Tebyrce, “Erbliche Radikale von Algebren. (Torsionen von Algebren),” Stud. Alg. Anwend.,1, 1–8 (1976).Google Scholar
  197. 197.
    Pham Ngoc Anh, “On the theory of linearly compact rings. I,” Beitr. Algebra und Geom. Wiss. Beitr. M.-Luther-Univ. Halle Wittenberg, 1980 M, No. 15, 13–27.Google Scholar
  198. 198.
    Pham Ngoc Anh and R. Wiegandt, “Linearly compact semisimple rings and regular modules,” Math. Jpn.,23, No. 4, 335–338 (1978).Google Scholar
  199. 199.
    Kanroku Aoyama, “On the commutativity of torsion and injective hull,” Hiroshima Math. J.,6, No. 3, 527–537 (1976).Google Scholar
  200. 200.
    E. Armendariz, “Rings with an almost Noetherian ring of fractions,” Math. Scand.,41, No. 1, 15–18 (1977).Google Scholar
  201. 201.
    E. Armendariz, “Rings with DDC on essential left ideals,” Commun. Algebra,8, No. 3, 299–308 (1980).Google Scholar
  202. 202.
    E. Armendariz and J. W. Fischer, “Idealizers in rings,” J. Algebra,39, No. 2, 551–562 (1976).Google Scholar
  203. 203.
    D. M. Arnold, “General and direct sum decompositions of torsion free modules,” Lect. Notes Math.,616, 197–218 (1977).Google Scholar
  204. 204.
    J. Arnold, R. Gilmer, and W. Heinzer, “Some countability conditions on commutative rings,” Ill. J. Math.,21, No. 3, 648–665 (1977).Google Scholar
  205. 205.
    Sh. Asano and K. Motose, “On QF-2 algebras with commutative radicals,” Math. J. Okyama Univ.,22, No. 1, 17–20 (1980).Google Scholar
  206. 206.
    K. E. Aubert and I. Fleischer, “Tensor products of ideal systems and their modules,” Pac. J. Math.,74, No. 2, 285–296 (1978).Google Scholar
  207. 207.
    M. Auslander, “Almost split sequences,” Lect. Notes Math.,438, 1–8 (1975).Google Scholar
  208. 208.
    M. Auslander, “Functors and morphisms determined by objects,” in: Representation Theory of Algebras. Proc. Philadelphia Conference, New York-Basel (1978), pp. 1–244.Google Scholar
  209. 209.
    M. Auslander, “Applications of morphisms determined by modules,” in: Representation Theory of Algebras. Proc. Philadephia Conference, New York-Basel (1978), pp. 245–327.Google Scholar
  210. 210.
    M. Auslander, “Preprojective modules over Artin algebras,” in: Ring Theory (Proc. Antwerp Confer., 1978) (1979), pp. 361–384.Google Scholar
  211. 211.
    M. Auslander, M. I. Bautista, I. Platzeck, L. Reiten, and S. O. Smalo, “Almost split sequences whose middle term has at most two indecomposable summands,” Can. J. Math.,31, No. 5, 942–960 (1979).Google Scholar
  212. 212.
    M. Auslander, M. I. Platzeck, and I. Reiten, “Periodic modules over weakly symmetric algebras,” J. Pure Appl. Algebra,11, Nos. 1–3, 279–291 (1977–1978).Google Scholar
  213. 213.
    M. Auslander and I. Reiten, “Stable equivalence of dualizing R-varieties. II. Hereditary dualizing Rvarieties,” Adv. Math.,17, No. 2, 93–121 (1975).Google Scholar
  214. 214.
    M. Auslander and I. Reiten, “Stable equivalence of dualizing R-varieties, III. Dualizing R-varieties stably equivalent to hereditary dualizing R-varieties,” Adv. Math.,17, No. 2, 122–142 (1975).Google Scholar
  215. 215.
    M. Auslander and I. Reiten, “Stable equivalence of dualizing R-varieties. IV. Higher global dimension,” Adv. Math.,17, No. 2, 143–166 (1975).Google Scholar
  216. 216.
    M. Auslander and I. Reiten, “Representation theory of artin algebras. III. Almost split sequences,” Commun. Algebra,3, No. 3, 239–294 (1975).Google Scholar
  217. 217.
    M. Auslander and I. Reiten, “Almost split sequences,” Lect. Notes Math.,438, 9–19 (1975).Google Scholar
  218. 218.
    M. Auslander and I. Reiten, “On the representation type of triangular matrix rings,” J. London Math. Soc.,12, No. 3, 371–382 (1976).Google Scholar
  219. 219.
    Ch. Ayoub, “Anneaux locaux et unisériels,” Semin. P. Dubreil. Algebre. Univ. Paris, 1971–1972,25, No. 1, 14/1–14/4 (1973).Google Scholar
  220. 220.
    Ch. Ayoub, “Conditions for a ring to be fissile,” Acta Math. Acad. Sci. Hungar.,30, Nos. 3/4, 233–237 (1977).Google Scholar
  221. 221.
    G. Azumaya, “Some aspects of Fuller's theorem,” Lect. Notes Math.,700, 34–45 (1979).Google Scholar
  222. 222.
    G. Baccella, “Sulla functorialita dell' inviluppo\(\mathfrak{F}\)-iniettivo,” Ann. Univ. Ferrara,22, 107–113 (1976).Google Scholar
  223. 223.
    J. W. Ballard, “Injective modules for restricted enveloping algebras,” Math. Z.,163, No. 1, 57–64 (1978).Google Scholar
  224. 224.
    B. Ballet, “Topologies linéaires et modules artiniens,” Thèse Doct. Sci. Math., Univ. Paris-Sud (1971).Google Scholar
  225. 225.
    B. Ballet, “Topologies linéaires et modules artiniens,” J. Algebra,41, No. 2, 365–397 (1976).Google Scholar
  226. 226.
    D. Ballew, “Cyclic ideals in order,” Riv. Mat. Univ. Parma,3, 1–16 (1977(1978)).Google Scholar
  227. 227.
    B. Banaschewski and E. Nelson, “On the nonexistence of injective near ring modules,” Can. Math. Bull.,20, No. 1, 17–23 (1977).Google Scholar
  228. 228.
    H. Bass, “Ranks of projective ZG-modules,” Queen Pap. Pure Appl. Math., No. 42, 63–69 (1975).Google Scholar
  229. 229.
    W. Baur, “ℵ0-categorical modules,” J. Symbol. Log.,40, No. 2, 213–230 (1975).Google Scholar
  230. 230.
    S. Bazzoni, “On the algebraic compactness of some complete modules,” Rend. Semin. Mat. Univ. Padova,56, 161–167 (1976(1978)).Google Scholar
  231. 231.
    S. Bazzoni, “Dualitá sul completamento naturale di un anello noetheriano,” Rend. Semin. Mat. Univ. Padova,55, 63–80 (1976(1977)).Google Scholar
  232. 232.
    S. Bazzoni, “Pontryagin type dualities over commutative rings,” Ann. Mat. Pura Appl., No. 121, 373–385 (1979).Google Scholar
  233. 233.
    J. A. Beachy, “Perfect quotient functors,” Commun. Algebra,2, 403–427 (1974).Google Scholar
  234. 234.
    J. A. Beachy, “On Morita's localization,” J. Algebra,38, No. 1, 225–243 (1975).Google Scholar
  235. 235.
    J. A. Beachy, “Some aspects of noncommutative localization,” Lect. Notes Math.,545, 2–31 (1976).Google Scholar
  236. 236.
    J. A. Beachy, “On the torsion theoretic support of a module,” Hokkaido Math. J.,6, No. 1, 16–27 (1977).Google Scholar
  237. 237.
    J. A. Beachy, “Sur les anneaux FBN à gauche,” Ann. Sci. Math. Quebec,1, No. 1, 59–62 (1977).Google Scholar
  238. 238.
    J. A. Beachy, “Injective modules with both ascending and descending chain conditions on annihilators,” Commun. Algebra,6, No. 17, 1777–1788 (1978).Google Scholar
  239. 239.
    J. A. Beachy, “Fully left bounded left Noetherian rings,” Lect. Notes Math.,700, 217 (1979).Google Scholar
  240. 240.
    J. A. Beachy, “On inversive localization,” Lect. Notes Math.,700, 46–56 (1979).Google Scholar
  241. 241.
    J. A. Beachy, “On localization at an ideal,” Can. Math. Bull.,22, No. 4, 397–401 (1979).Google Scholar
  242. 242.
    J. A. Beachy and W. D. Blair, “Localization at semiprime ideals,” J. Algebra,38, No. 2, 309–314 (1976).Google Scholar
  243. 243.
    J. A. Beachy and W. D. Blair, “Finitely annihilated modules and orders in Artinian rings,” Commun. Algebra,6, No. 1, 1–34 (1978).Google Scholar
  244. 244.
    I. Beck and P. Trosborg, “A note on free direct summands,” Math. Scand.,42, No. 1, 34–38 (1978).Google Scholar
  245. 245.
    Ernst-August Behrens, Ringtheorie, B. I.-Wissenschafts-verlag, Mannheim e.s. (1975).Google Scholar
  246. 246.
    W. R. Belding, “Bases for the positive cone of a partially ordered module,” Trans. Am. Math. Soc.,235, 305–313 (1978).Google Scholar
  247. 247.
    H. Bernecker, “Flatness and absolute purity applying functor categories to ring theory,” J. Algebra,44, No. 2, 411–419 (1977).Google Scholar
  248. 248.
    P. H. Berridge and M. J. Dunwoody, “Nonfree projective modules for torsion-free groups,” J. London Math. Soc.,19, No. 3, 433–436 (1979).Google Scholar
  249. 249.
    F. Berrondo, “Sur le corps des fractions d'un anneau de séries formelles généralisées,” C. R. Acad. Sci.,284, A1419-A1432 (1977).Google Scholar
  250. 250.
    D. Berry, “Modules whose cyclic submodules have finite dimension,” Can. Math. Bull.,19, No. 1, 1–6 (1976).Google Scholar
  251. 251.
    S. M. Bhatwadecar, “On the global dimension of some filtered algebras. II,” J. Pure Appl. Algebra,12, No. 1, 1–14 (1978).Google Scholar
  252. 252.
    L. Bican, “General concept of injectivity,” Stud. Alg. Anwend.,1, 37–40 (1976).Google Scholar
  253. 253.
    L. Bican, “Corational extensions and pseudo-projective modules,” Acta Math. Acad. Sci. Hung.,28, Nos. 1–2, 5–11 (1976).Google Scholar
  254. 254.
    L. Bican, “Kulikov's criterion for modules,” J. Reine Angew. Math.,288, 154–159 (1976).Google Scholar
  255. 255.
    L. Bican, “The structure of primary modules,” Acta Univ. Carol., Math. Phys.,17, No. 2, 3–12 (1976).Google Scholar
  256. 256.
    L. Bican, P. Jambor, T. Kepka, and P. Nemec, “Centrally splitting radicals,” Comment. Math. Univ. Carol.,17, No. 1, 31–47 (1976).Google Scholar
  257. 257.
    L. Bican, P. Jambor, T. Kepka, and P. Nemec, “Hereditary and cohereditary preradicals,” Czechosl. Mat. J.,26, No. 2, 192–206 (1976).Google Scholar
  258. 258.
    L. Bican, P. Jambor, T. Kepka, and P. Nemec, “A note on test modules,” Comment. Math. Univ. Carol.,17, No. 2, 345–355 (1976).Google Scholar
  259. 259.
    L. Bican, P. Jambor, T. Kepka, and P. Nemec, “Generation of preradicals,” Czechosl. Mat. J.,27, No. 1, 155–166 (1977).Google Scholar
  260. 260.
    L. Bican, P. Jambor, T. Kepka, and P. Nemec, “Pseudoprojective modules,” Math. Slovaca,29, No.2, 107–115 (1979).Google Scholar
  261. 261.
    L. Bican, P. Jambor, T. Kepka, and P. Nemec, “Prime and coprime modules,” Fund. Math.,107, No. 1, 33–45 (1980).Google Scholar
  262. 262.
    R. Bieri and R. Strebel, “Soluble groups with coherent group rings,” London Math. Soc. Lect. Note Ser., No. 36, 235–240 (1979).Google Scholar
  263. 263.
    A. Bigard, “Theories de torsion et f-modules,” Semin. P. Dubreil. Algèbre. Univ. Paris,26, 5/1–5/12 (1972–1973).Google Scholar
  264. 264.
    A. Bigard, K. Keimel, and S. Wolfenstein, “Groupes et anneaux réticules,” Lect. Notes Math.,608 (1977).Google Scholar
  265. 265.
    G. F. Birkenmeier, “On the cancellations of quasiinjective modules,” Commun. Algebra,4, No. 2, 101–109 (1976).Google Scholar
  266. 266.
    G. F. Birkenmeier, “Self-injective rings and the minimal direct summand containing the nilpotents,” Commun. Algebra,4, No. 8, 705–721 (1976).Google Scholar
  267. 267.
    G. F. Birkenmeier, “Modules which are subisomorphic to injective modules,” J. Pure Appl. Algebra,13, No. 2, 169–177 (1978).Google Scholar
  268. 268.
    P. E. Bland, “Relatively flat modules,” Bull. Austral. Math. Soc.,13, No. 3, 375–387 (1975).Google Scholar
  269. 269.
    P. E. Bland, “Remarks on strongly M-projective modules,” Ill. J. Math.,23, No. 1, 167–174 (1979).Google Scholar
  270. 270.
    T. S. Blyth, Module Theory. An Approach to Linear Algebra, Oxford Univ. Press (1977).Google Scholar
  271. 271.
    M. Boisen and Ph. Sheldon, “Pre-Prüfer rings,” Pac. J. Math.,58, No. 2, 331–344 (1975).Google Scholar
  272. 272.
    K. Bongartz and C. Riedtmann, “Algèbres stablement héréditaires,” C. R. Acad. Sci.,288, No. 15, A703-A706 (1979).Google Scholar
  273. 273.
    M. Boratynski, “A change of rings theorem and the Artin-Rees property,” Proc. Am. Math. Soc.,53, No. 2, 307–310 (1975).Google Scholar
  274. 274.
    M. Boratynski, “Generating ideals up to radical,” Arch. Math.,33, No. 5, 423–429 (1980).Google Scholar
  275. 275.
    A. Bouvier, “Sur les anneaux principaux,” Acta Math. Acad. Sci. Hung.,27, Nos. 3–4, 231–242 (1976).Google Scholar
  276. 276.
    A. K. Boyle, “Injectives containing no proper quasiinjective submodules,” Commun. Algebra,4, No. 8, 775–785 (1976).Google Scholar
  277. 277.
    A. K. Boyle, “The large condition for rings with Krull dimension,” Proc. Am. Math. Soc.,72, No. 1, 27–32 (1978).Google Scholar
  278. 278.
    A. K. Boyle and E. H. Feller, “Smooth Noetherian modules,” Commun. Algebra,4, No. 7, 617–637 (1976).Google Scholar
  279. 279.
    A. K. Boyle and E. H. Feller, “Semicritical modules and k-primitive rings,” Lect. Notes Math.,700, 57–74 (1979).Google Scholar
  280. 280.
    A. K. Boyle and K. R. Goodearl, “Rings over which certain modules are injective,” Pac. J. Math.,58, No. 1, 43–53 (1975).Google Scholar
  281. 281.
    W. Brandal, “On h-local integral domains,” Trans. Am. Math. Soc.,206, 201–212 (1975).Google Scholar
  282. 282.
    W. Brandal, “Constructing Bezout domains,” Rocky Mountain J. Math.,6, No. 3, 383–399 (1976).Google Scholar
  283. 283.
    W. Brandal, “Commutative rings whose finitely generated modules decompose,” Lect. Notes Math.,723 (1979).Google Scholar
  284. 284.
    W. Brandal and M. Wiegand, “Reduced rings whose finitely generated modules decompose,” Commun. Algebra,6, No. 2, 195–201 (1978).Google Scholar
  285. 285.
    Sh. Brenner and C. M. Ringel, “Pathological modules over tame rings,” J. London Math. Soc.,14, No. 2, 207–215 (1976).Google Scholar
  286. 286.
    J. W. Brewer and D. L. Costa, “Contracted ideals and purity for ring extensions,” Proc. Am. Math. Soc.,53, No. 2, 271–276 (1975).Google Scholar
  287. 287.
    J. W. Brewer and D. L. Costa, “Projective modules over some non-Noetherian polynomial rings,” J. Pure Appl. Algebra,13, No. 2, 157–163 (1978).Google Scholar
  288. 288.
    J. W. Brewer, E. A. Rutter, and J. J. Watkins, “Coherence and weak global dimension of R [[X]] when R is von Neumann regular,” J. Algebra,46, No. 1, 278–289 (1977).Google Scholar
  289. 289.
    W. Brockmann, “Projektive Moduln über semilokalen Ringen,” Diss. Dokt. Naturwiss. Abt. Math., Ruhr-Univ. Bochum (1975).Google Scholar
  290. 290.
    W. Brockmann, “Struktur projektiver Moduln über semilokalen Ringen,” Arch. Math.,29, No. 4, 406–409 (1977).Google Scholar
  291. 291.
    J. G. Brookshear, “Projective ideals in rings of continuous functions,” Pac. J. Math.,71, No. 2, 313–344 (1977).Google Scholar
  292. 292.
    J. G. Brookshear, “On projective prime ideals inC(X),” Proc. Am. Math. Soc.,69, No. 1, 203–204 (1978).Google Scholar
  293. 293.
    K. A. Brown, “Artinian quotient rings of group rings,” J. Algebra,49, No. 1, 63–80 (1977).Google Scholar
  294. 294.
    K. A. Brown, “The singular ideals of group rings. I,” Q. J. Math.,28, No. 109, 41–60 (1977).Google Scholar
  295. 295.
    K. A. Brown, “The singular ideals of group rings. II,” Q. J. Math.,29, No. 114, 187–197 (1978).Google Scholar
  296. 296.
    K. A. Brown, “Quotient rings of group rings,” Compos. Math.,36, No. 3, 243–254 (1978).Google Scholar
  297. 297.
    K. A. Brown and J. Lawrence, “Injective hulls of group rings,” Pac. J. Math.,85, No. 2, 323–343 (1979).Google Scholar
  298. 298.
    K. A. Brown, T. H. Lenagan, and J. T. Stafford, “Weak ideal invariance and localization,” J. London Math. Soc.,21, No. 1, 53–61 (1980).Google Scholar
  299. 299.
    G. W. Brumfiel, Partially Ordered Rings and Semialgebraic Geometry, London Math. Soc. Lect. Note Series, No. 37 (1979).Google Scholar
  300. 300.
    W. Bruns, “‘Jede’ endliche freie Auflösung ist freie Auflösung eines von drei Elementen erzeugten Ideals,” J. Algebra,39, No. 2, 429–439 (1976).Google Scholar
  301. 301.
    W. Bruns, “Zur Einbettung von Moduln in zyklische Moduln und direkte Summen zyklischer Moduln,” J. Algebra,53, No. 1, 239–252 (1978).Google Scholar
  302. 302.
    W. Bruns, “Basische Elemente in Steinschen Moduln,” Monatsh. Math.,85, No. 4, 283–295 (1978).Google Scholar
  303. 303.
    W. Bruns and U. Vetter, “Die Verallgemeinerung eines Satzes von Bourbaki und einige Anwendungen,” Manuscr. Math.,17, No. 4, 317–325 (1975).Google Scholar
  304. 304.
    Ju. Brzezinski, “Lattices of normally indecomposable modules,” Proc. Am. Math. Soc.,68, No. 3, 271–276 (1978).Google Scholar
  305. 305.
    A. Buium, “Asupra algebrelor cu modulele de differentiale Projective,” Stud, si Cerc. Mat.,32, No. 2, 135–151 (1980).Google Scholar
  306. 306.
    A. Bulaszewska and J. Krempa, “On epimorphisms in the category of all associative rings,” Bull. Acad. Pol. Sci. Ser. Sci. Math., Astron. Phys.,23, No. 11, 1153–1159 (1975(1976)).Google Scholar
  307. 307.
    W. Burgess and R. Raphael, “Sur deux notions de complétude dans les anneaux semipremiers,” C. R. Acad. Sci.,283, No. 13, A927-A929 (1976).Google Scholar
  308. 308.
    M. C. R. Butler, “On the structure of modules over certain augmented algebras,” Proc. London Math. Soc.,21, No. 3, 277–295 (1970).Google Scholar
  309. 309.
    M. C. R. Butler, “The construction of almost split sequences. I,” Proc. London Math. Soc.,40, No. 1, 72–86 (1980).Google Scholar
  310. 310.
    K. A. Byrd, “Right self-injective rings whose essential right ideals are two-sided,” Pac. J. Math.,82, No. 1, 23–41 (1979).Google Scholar
  311. 311.
    L. Caire and U. Cervuti, “Fuzzy relational spaces and algebraic structures,” Rend. Semin. Mat. Univ. Politechn. Torino,35, 443–461 (1976(1977).Google Scholar
  312. 312.
    V. Camillo, “Distributive modules,” J. Algebra,36, No. 1, 16–25 (1975).Google Scholar
  313. 313.
    V. Camillo, “Modules whose quotients have finite Goldie dimension,” Pac. J. Math.,69, No. 2, 337–338 (1977).Google Scholar
  314. 314.
    V. Camillo, “On a conjecture of Herstein,” J. Algebra,50, No. 2, 274–275 (1978).Google Scholar
  315. 315.
    V. Camillo, “Homological independence of injective hulls of simple modules over commutative rings,” Commun. Algebra,6, No. 14, 1459–1469 (1978).Google Scholar
  316. 316.
    V. Camillo and K. R. Fuller, “Rings whose faithful modules are flat over their endomorphism rings,” Arch. Math.,27, No. 5, 522–525 (1976).Google Scholar
  317. 317.
    V. Camillo and K. R. Fuller, “A note on Loewy rings and chain conditions on primitive ideals,” Lect. Notes Math.,700, 75–86 (1979).Google Scholar
  318. 318.
    V. Camillo and J. Zelmanowitz, “On the dimension of a sum of modules,” Commun. Algebra,6, No. 4, 345–352 (1978).Google Scholar
  319. 319.
    J. M. Campbell, “Torsion theories for modules over a triangular matrix ring,” Bull. Austral. Math. Soc.,19, No. 2, 299–300 (1978).Google Scholar
  320. 320.
    J. F. Carlson, “Free modules over some modular group rings,” J. Austral. Math. Soc.,21, Part 1, 49–55 (1976).Google Scholar
  321. 321.
    J. F. Carlson, “Almost free modules over modular group algebras,” J. Algebra,41, No. 2, 243–254 (1976).Google Scholar
  322. 322.
    J. F. Carlson, “Cyclic modules over some modular group algebras,” Stud. Sci. Math. Hungarica,11, Nos. 3/4, 324–333 (1976).Google Scholar
  323. 323.
    J. F. Carlson, “Periodic modules over modular group algebras,” J. London Math. Soc.,15, No. 3, 431–436 (1977).Google Scholar
  324. 324.
    J. F. Carlson, “Periodic modules with large periods,” Proc. Am. Math. Soc.,76, No. 2, 209–215 (1979).Google Scholar
  325. 325.
    R. Carlson, “Malcev-Moduln,” J. Reine Angew. Math.,281, 199–210 (1976).Google Scholar
  326. 326.
    M. Carral, “Modules de type fini sur un anneau mou,” C. R. Acad. Sci.,281, No. 4, A129-A132 (1975).Google Scholar
  327. 327.
    J. E. Carrig, “The homological dimensions of symmetric algebras,” Trans. Am. Math. Soc.,236, 275–285 (1978).Google Scholar
  328. 328.
    J. E. Carrig and W. V. Vasconcelos, “Projective ideals in rings of dimension one,” Proc. Am. Math. Soc.,71, No. 2, 169–173 (1978).Google Scholar
  329. 329.
    A. B. Carson, “Representation of irregular rings of finite index,” J. Algebra,39, No. 2, 512–526 (1976).Google Scholar
  330. 330.
    A. B. Carson, “Coherent polynomial rings over regular rings of finite index,” Pac. J. Math.,74, No. 2, 327–332 (1978).Google Scholar
  331. 331.
    D. W. Carter, “Projective module groups of SLn(Z) and GLn(Z),” J. Pure Appl. Algebra,16, No. 1, 49–54 (1980).Google Scholar
  332. 332.
    G. Cauchon, “Les T-anneaux, la condition (H) de Gabriel et ses consequences,” Commun. Algebra,4, No. 1, 11–50 (1976).Google Scholar
  333. 333.
    G. Cauchon, “Anneaux de polynomes essentiellement bornes,” in: Ring Theory Proc. Antwerp Conf., 1978, New York-Basel (1979), pp. 27–42.Google Scholar
  334. 334.
    G. Cauchon and L. Lesieur, “Localisation classique en un ideal premier d'un anneau noetherian à gauche,” Commun. Algebra,6, No. 11, 1091–1108 (1978).Google Scholar
  335. 335.
    M. P. Cavalliero, “Sui moduli liberi e proiettivi graduati,” Publ. Inst. Mat. Univ. Genova, No. 160 (1976).Google Scholar
  336. 336.
    M. P. Cavalliero, “Sui moduli liberi e prieffivi graduati,” Boll. Unione Mat. Ital.,A14, No. 1, 82–91 (1977).Google Scholar
  337. 337.
    M. Chamarie, “Ordres maximaux et R-ordres maximaux,” C. R. Acad. Sci.,A285-B285, No. 16, 989–991 (1977).Google Scholar
  338. 338.
    M. Chamarie, “Anneaux de polynomes et ordres maximaux,” C. R. Acad. Sci.,287, No. 8, 599–601 (1978).Google Scholar
  339. 339.
    M. Chamarie, “Ordres maximaux et R-ordres maximaux,” J. Algebra,58, No. 1, 148–156 (1979).Google Scholar
  340. 340.
    M. Chamarie and A. Hudry, “Anneaux noetheriens à droite entiers sur leurs centres,” C. R. Acad. Sci.,283, No. 15, A1011-A1012 (1971).Google Scholar
  341. 341.
    M. Chamarie and A. Hudry, “Anneaux noetheriens à droite entiers sur un sous-anneau de leur centre,” Commun. Algebra,6, No. 2, 203–222 (1978).Google Scholar
  342. 342.
    M. Chamarie and G. Maury, “Un theorème de l'idéal á gauche principal dans les anneaux premiers, noethériens, à identité polynomial dont the centre est un domaine de Krull,” C. R. Acad. Sci.,AB286, No. 14, A609-A611 (1978).Google Scholar
  343. 343.
    V. R. Chandran, “On conjecture of Hyman Bass,” Pure Appl. Math.Sci.,4, Nos. 1/2, 125–131 (1976).Google Scholar
  344. 344.
    A. W. Chatters, “Two results on PP rings,” Commun. Algebra,4, No. 9, 881–891 (1976).Google Scholar
  345. 345.
    A. W. Chatters, “A note on Noetherian orders in Artinian rings,” Glasgow Math. J.,20, No. 2, 125–128 (1979).Google Scholar
  346. 346.
    A. W. Chatters, A. W. Goldie, C. R. Hajarnavis, and T. H. Lenagan, “Reduced rank in Noetherian rings,” J. Algebra,61, No. 2, 582–589 (1979).Google Scholar
  347. 347.
    A. W. Chatters and C. R. Hajarnavis, “Rings in which every complement right ideal is a direct summand,” Q. J. Math.,28, No. 109, 61–80 (1977).Google Scholar
  348. 348.
    A. W. Chatters, C. R. Hajarnavis, and N. C. Norton, “The Artin radical of a Noetherian ring,” J. Austral. Math. Soc.,A23, No. 3, 379–384 (1977).Google Scholar
  349. 349.
    A. W. Chatters and J. C. Robson, “Decomposition of orders in semiprimary rings,” Commun. Algebra,8, No. 6, 517–532 (1980).Google Scholar
  350. 350.
    A. W. Chatters and P. F. Smith, “A note on hereditary rings,” J. Algebra,44, No. 1, 181–190 (1977).Google Scholar
  351. 351.
    T. J. Cheatham and J. R. Smith, “Regular and semisimple modules,” Pac. J. Math.,65, No. 2, 315–323 (1976).Google Scholar
  352. 352.
    G. Cherlin, Model Theoretic Algebra. Selected Topics, Lect. Notes Math.,521 (1976).Google Scholar
  353. 353.
    K. Chiba and H. Tominaga, “Note on strongly regular rings and P1-rings,” Proc. Jpn. Acad.,51, No.4, 259–261 (1975).Google Scholar
  354. 354.
    A. V. Chiplunkar, “Global dimension of algebra of differential operators,” J. Indian Math. Soc.,38, Nos. 1–4, 1–17 (1974(1975)).Google Scholar
  355. 355.
    D. P. Choudhury and K. Tewary, “Tensor parities, cyclic quasiprojectivies and cocyclic copurity,” Commun. Algebra,7, No. 15, 1559–1572 (1979).Google Scholar
  356. 356.
    L. G. Chouinard, “Projectivity and relative projectivity over group rings,” J. Pure Appl. Algebra,7, No. 3, 287–302 (1976).Google Scholar
  357. 357.
    J. Chuchel and N. Eggert, “The complete quotient ring of images of semilocal Prufer domains,” Can. J. Math.,29, No. 5, 914–927 (1977).Google Scholar
  358. 358.
    L. W. Chung and J. Luh, “A characterization of semisimple Artinian rings,” Mat. Jpn.,21, No. 3, 227–228 (1976).Google Scholar
  359. 359.
    B. S. Chwe and J. Neggers, “Some classes of rings defined by properties of modules,” Rev. Univ. Mat. Argent., No. 1, 54–59 (1976(1977)).Google Scholar
  360. 360.
    M. Cipolla, “Diseesa fedelmente piatta dei moduli,” Rend. Circ. Mat. Palermo,25, Nos. 1–2, 43–46 (1976).Google Scholar
  361. 361.
    T. G. Clarke, “Embedding flat modules in filtered unions of projectives,” Commun. Algebra,5, No. 3, 293–303 (1977).Google Scholar
  362. 362.
    J. M. Cohen, “On the number of generators of a module,” J. Pure Appl. Algebra,12, No. 1, 15–19 (1978).Google Scholar
  363. 363.
    J. M. Cohen and S. Montgomery, “The normal closure of semiprime rings,” in: Ring Theory. Proc. Antwerp Conf., 1978, New York-Basel (1979), pp. 43–49.Google Scholar
  364. 364.
    P. M. Cohn, “Numerateurs et dénominateurs dans le corps de fractions d'un semifir,” Semin. P. Dubreil. Algèbre Univ. Pierre et Marie Curie,28, 28/1–28/7 (1974–1975).Google Scholar
  365. 365.
    P. M. Cohn, “A construction of simple principal right ideal domains,” Proc. Am. Math. Soc.,66, No. 2, 217–222 (1977).Google Scholar
  366. 366.
    P. M. Cohn, “Full modules over semifirs,” Publ. Math.,24, Nos. 3–4, 305–310 (1977).Google Scholar
  367. 367.
    P. M. Cohn, “The affine scheme of a general ring,” Lect. Notes Math.,753, 197–211 (1979).Google Scholar
  368. 368.
    P. M. Cohn and W. Dicks, “Localization in semifirs. II,” J. London Math. Soc.,13, No. 3, 411–418 (1976).Google Scholar
  369. 369.
    L. R. Colavita, “Sobre una generalizacion del teorema de descomposicion primaria de grupos a ciertas teorias de torsion en anillos commutativos,” An. Inst. Mat. Univ. Nac. Auton., Mex.,18, No. 1, 7–12 (1978).Google Scholar
  370. 370.
    L. R. Colavita, F. C. Raggi, and M. J. Rios, “Sobre filtros estables de Gabriel. V. (Algunas interpretaciones topologicas respecto a filtros de Gabriel),” An. Inst. Mat. Univ. Nac. Auton. Mex.,17, No. 1, 1–16 (1977).Google Scholar
  371. 371.
    L. R. Colavita and Montes J. Rios, “Sobre filtros estable de Gabriel. VI. (Filtros neterianos),” An. Inst. Mat. Univ. Nac. Auton. Mex.,18, No. 1, 13–25 (1978).Google Scholar
  372. 372.
    N. Conze-Berline, “Sur certains quotients de l'algebre enveloppante d'un algèbre de Lie semi-simple,” Lect. Notes Math.,466, 31–37 (1975).Google Scholar
  373. 373.
    D. Costa, “Unique factorization in modules and symmetric algebras,” Trans. Am. Math. Soc.,224, No. 2, 267–280 (1976).Google Scholar
  374. 374.
    M. Coste, “Localization, spectra and sheaf representation,” Lect. Notes Math.,753, 212–238 (1979).Google Scholar
  375. 375.
    Gh. Costovici, “General topological frame for Zariski's topologies,” Bull. Inst. Politeh. lasi,24, Sec. I, Nos. 3–4, 9–12 (1978).Google Scholar
  376. 376.
    F. Couchot, “Sur le dual de la notion de présentation finie,” C. R. Acad. Sci.,281, No. 23, A1005-A1008 (1975).Google Scholar
  377. 377.
    F. Couchot, “Topologie cofinie et modules pur-injectifs,” C. R. Acad. Sci.,283, No. 6, A277-A280 (1976).Google Scholar
  378. 378.
    F. Couchot, “Anneaux auto-fp-injectifs,” C. R. Acad. Sci.,284, No. 11, A579-A582 (1977).Google Scholar
  379. 379.
    F. Couchot, “Sous-modules purs et modules de type cofini,” Lect. Notes Math.,641, 198–208 (1978).Google Scholar
  380. 380.
    F. Couchot, “Classes d'anneaux contenant les V-anneaux et les anneaux absolument plats,” Lect. Notes Math.,740, 170–183 (1979).Google Scholar
  381. 381.
    R. Couture and M. Lavoie, “Réciproque du théoreme des bases sur un espace vectoriel,” Can. Math. Bull.,18, No. 5, 749–751 (1975).Google Scholar
  382. 382.
    S. H. Cox, Jr., “The preparation theorem and the freeness of A[[X]]/J,” Proc. Am. Math. Soc.,61, No. 2, 227–231 (1976).Google Scholar
  383. 383.
    J. H. Cozzens, “Maximal orders and reflexive modules,” Trans. Am. Math. Soc.,219, 323–336 (1976).Google Scholar
  384. 384.
    J. H. Cozzens, “The structure of localizable algebras having finite global dimension,” in: Ring Theory (Proc. Antwerp Conf., 1978) (1979), pp. 599–612.Google Scholar
  385. 385.
    J. H. Cozzens and F. L. Sandomierski, “Reflexive primes, localization and primary decomposition in maximal orders,” Proc. Am. Math. Soc.,58, 44–50 (1976).Google Scholar
  386. 386.
    J. H. Cozzens and F. L. Sandomierski, “Maximal orders and localization. I,” J. Algebra,44, No. 2, 319–338 (1977).Google Scholar
  387. 387.
    J. H. Cozzens and F. L. Sandomierski, “Localization at a semiprime ideal of a right Noetherian ring,” Commun. Algebra,5, No. 7, 707–726 (1977).Google Scholar
  388. 388.
    W. Crawley, “Epimorphisms and H-coextensions,” Arch. Math.,30, No. 5, 449–457 (1978).Google Scholar
  389. 389.
    I. Crivei, “c-pure exact sequences of R-modules,” Mathematica (RSR),17, No. 1, 59–65 (1975).Google Scholar
  390. 390.
    I. Crivei, “c-pure injective modules,” Mathematica (RSR),17, No. 2, 167–172 (1975).Google Scholar
  391. 391.
    I. Crivei, “Asupra unei clase de inele,” Bul. Sti. Inst. Politehn. Cluj. Ser. Mec.,20, 17–19 (1977).Google Scholar
  392. 392.
    G. D. Crown and J. J. Hutchinson, “On the exactness of the completion functor,” Commun. Algebra,8, No. 1, 1–12 (1980).Google Scholar
  393. 393.
    R. F. Damiano, “Coflat rings and modules,” Pac. J. Math.,81, No. 2, 349–369 (1979).Google Scholar
  394. 394.
    R. F. Damiano, “A right PCI ring is right Noetherian,” Proc. Am. Math. Soc.,77, No. 1, 11–14 (1979).Google Scholar
  395. 395.
    R. S. Dark, “On hypercentral groups and Artinian modules,” J. Algebra,41, No. 2, 597–599 (1976).Google Scholar
  396. 396.
    Ch. Dartois, Categories Preadditives et Modules, Equisses Math., Fac. Sci. Univ. Paris VII, No. 13 (1971).Google Scholar
  397. 397.
    J. Dauns, “Quotient rings and one-sided primes,” J. Reine Angew. Math., 278–279, 205–224 (1975); correction: ibid.,280, 205 (1976).Google Scholar
  398. 398.
    J. Dauns, “Generalized monoform and quasiinjective modules,” Pac. J. Math.,66, No. 1, 49–66 (1976).Google Scholar
  399. 399.
    J. Dauns, “Prime modules,” J. Reine Angew. Math.,298, 156–181 (1978).Google Scholar
  400. 400.
    B. J. Day, “On topological modules and duality,” Cah. Topol. Geom. Diff.,20, No. 3, 297–310 (1979).Google Scholar
  401. 401.
    L. de Munter-Kuyl, “Some invariants for rank three torsion-free modules over a Dedekind domain,” Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis., Mat. Natur.,59, No. 5, 349–356 (1975 (1976)).Google Scholar
  402. 402.
    L. de Munter-Kuyl, “Isomorphisms of rank two torsion-free modules over a Dedekind domain,” Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.,60, No. 4, 351–358 (1976).Google Scholar
  403. 403.
    J. Descovich, “Ringe mit monotoner modul dimension,” in: Rings, Modules and Radicals, Amsterdam-London (1973), pp. 153–166.Google Scholar
  404. 404.
    M. Desrochers, “Dimensions globales des extensions de Ore et des algèbres de Weyl,” Groupe Etude Algebre. Univ. Pierre et Marie Curie, 1976–1977, 6/01–6/31 (1978).Google Scholar
  405. 405.
    W. Dicks, “Hereditary group rings,” J. London Math. Soc.,20, No. 1, 27–38 (1979).Google Scholar
  406. 406.
    W. Dicks, “Groups, trees and projective modules,” Lect. Notes Math.,790 (1980).Google Scholar
  407. 407.
    W. Dicks and P. Menal, “The group rings that are semifir,” J. London Math. Soc.,19, No. 2, 288–290 (1979).Google Scholar
  408. 408.
    W. Dicks and E. D. Sontag, “Sylvester domains,” J. Pure Appl. Algebra,13, No. 3, 243–275 (1978).Google Scholar
  409. 409.
    Y. Diers, “Spectres et localisations relatifs à un foncteur,” C. R. Acad. Sci.,287, No. 15, 985–989 (1978).Google Scholar
  410. 410.
    S. Dinca, “On co-noetherian modules,” Stud. Cerc. Math.,25, 643–646 (1973).Google Scholar
  411. 411.
    V. H. Dinh, “Über die Frage der Spalbarkeit von MHP-ringen,” Bull. Acad. Pol. Sci. Ser. Sci. Math., Astron. Phys.,23, No. 2, 135–138 (1975).Google Scholar
  412. 412.
    V. H. Dinh, “Über Ringe mit Minimalbedingung für Hauptrechtideale,” Acta Math. Acad. Sci. Hungar.,26, Nos. 3–4, 245–250 (1975).Google Scholar
  413. 413.
    V. H. Dinh, “Über Ringe mit Minimalbedingun für Hauptrechtideale. II,” Stud. Sci. Math. Hungar.,9, Nos. 3–4, 419–423 (1976).Google Scholar
  414. 414.
    V. H. Dinh, “Über Ringe mit eingeschränkter Minimalbedingung höherer Stufe für Rechtsideale. I,” Math. Nachr.,71, 227–235 (1976).Google Scholar
  415. 415.
    V. H. Dinh, “Die Spalbarkeit von MHR-ringen,” Bull. Acad. Pol. Sci. Ser. Sci. Math., Astron. Phys.,25, No. 10, 939–941 (1977).Google Scholar
  416. 416.
    V. H. Dinh, “Über Ringe mit eingeschränkter Minimalbedingung höhere Stufe für Rechtsideale,” Math. Nachr.,86, 291–307 (1978).Google Scholar
  417. 417.
    V. H. Dinh and A. Widiger, “Über Ringe mit eingeschränkter Minimalbedingung höherer Stufe für Rechtsideale,” Math. Nachr.,86, 309–331 (1978).Google Scholar
  418. 418.
    V. Dlab, “Matrix rings as injective hulls of torsionfree tidy rings,” Ottawa (1972).Google Scholar
  419. 419.
    V. Dlab and C. M. Ringel, “The representations of tame hereditary algebras,” in: Represent. Theory Algebras. Proc. Philadelphia Conf., New York-Basel (1978), pp. 329–353.Google Scholar
  420. 420.
    V. Dlab and C. M. Ringel, “A module theoretical interpretation of properties of the root systems,” in: Ring Theory. Proc. Antwerp Conf., 1978, New York-Basel (1979), pp. 435–451.Google Scholar
  421. 421.
    D. Dobbs, “On the weak global dimension of pseudovaluation domains,” Can. Math. Bull.,21, No. 2, 159–164 (1978).Google Scholar
  422. 422.
    D. Dobbs, “Coherence, ascent of going down, and pseudovaluation domains,” Houston J. Math.,4, No. 4, 551–567 (1978).Google Scholar
  423. 423.
    D. Dobbs, “On flat finitely generated ideals,” Bull. Austral. Math. Soc.,21, No. 1, 131–135 (1980).Google Scholar
  424. 424.
    D. Dobbs and I. J. Papick, “When is D+M coherent?” Proc. Am. Math. Soc.,56, 51–54 (1976).Google Scholar
  425. 425.
    D. Dobbs and I. J. Papick, “Flat or open implies going down?” Proc. Am. Math. Soc.,65, No. 2, 370–371 (1977).Google Scholar
  426. 426.
    D. Doman and G. J. Hauptfleisch, “Filtered-injective and coflat modules,” Quaest. Math.,3, 33–48 (1978).Google Scholar
  427. 427.
    P. Dowbor and D. Simson, “A characterization of hereditary rings of finite representation type,” Bull. Am. Math. Soc.,1, No. 2, 300–302 (1980).Google Scholar
  428. 428.
    P. Dowbor and D. Simson, “Quasi-Artin species and rings of finite representation type,” J. Algebra,63, No. 2, 435–443 (1980).Google Scholar
  429. 429.
    F. Eckstein, “Orders in locally pro-Artinian rings,” J. Pure Appl. Algebra,14, No. 3, 253–258 (1979).Google Scholar
  430. 430.
    G. Eerkes, “Rings of equivalent dominant and codominant dimensions,” Proc. Am. Math. Soc.,48, No. 2, 297–306 (1975).Google Scholar
  431. 431.
    N. Eggert, “Rings whose overrings are integrally closed in their complete quotient ring,” J. Reine Angew. Math.,282, 88–95 (1976).Google Scholar
  432. 432.
    G. Ehrlich, “Units and one-sided units in regular rings,” Trans. Am. Math. Soc.,216, 81–90 (1976).Google Scholar
  433. 433.
    D. Eisenbud, “Solution du problème de Serre par Quillen-Suslin,” Lect. Notes Math.,586, 9–19 (1977).Google Scholar
  434. 434.
    P. C. Eklof, “Homological algebra and set theory,” Trans. Am. Math. Soc.,227, 207–226 (1977).Google Scholar
  435. 435.
    E. Enochs, “A note on absolutely pure modules,” Can. Math. Bull.,19, No. 3, 361–362 (1976).Google Scholar
  436. 436.
    M. W. Evans, “Extensions of semihereditary rings,” J. Austral. Math. Soc.,A23, No. 3, 333–339 (1977).Google Scholar
  437. 437.
    M. W. Evans, “Extended semihereditary rings,” J. Austral. Math. Soc.,A26, No. 4, 465–474 (1978).Google Scholar
  438. 438.
    A. Facchini, “Reflexive rings,” in: Symp. Math. Ist. Naz. Alta Mat. Francesco Severi, Vol. 23, Roma (1979), pp. 415–449.Google Scholar
  439. 439.
    C. Faith, “When are proper cyclics injective?” Pac. J. Math.,45, 97–1120 (1973); Correction: ibid.,55, 640–641 (1974).Google Scholar
  440. 440.
    C. Faith, “On a theorem of Chatters,” Commun. Algebra,3, No. 2, 169–184 (1975).Google Scholar
  441. 441.
    C. Faith, “Projective ideals in Cohen rings,” Arch. Math.,26, No. 6, 588–594 (1975).Google Scholar
  442. 442.
    C. Faith, “On hereditary rings and Boyle's conjecture,” Arch. Math.,27, No. 2, 113–119 (1976).Google Scholar
  443. 443.
    C. Faith, “Galois extensions of commutative rings,” Math. J. Okayama Univ.,18, No. 2, 113–116 (1976).Google Scholar
  444. 444.
    C. Faith, “Injective cogenerator rings and a theorem of Tachikawa,” Proc. Am. Math. Soc.,60, No. 208, 25–30 (1976).Google Scholar
  445. 445.
    C. Faith, “Semiperfect Prüfer rings and FPF rings,” Isr. J. Math.,26, No. 2, 166–177 (1977).Google Scholar
  446. 446.
    C. Faith, “Injective cogenerator rings and a theorem of Tachikawa. II,” Proc. Am. Math. Soc.,62, No. 1, 15–18 (1977).Google Scholar
  447. 447.
    C. Faith, “The basis theorem for modules a brief survey and a look to the future,” in: Ring Theory. Proc. Antwerp Conf., 1977, New York-Basel (1978), pp. 9–23.Google Scholar
  448. 448.
    C. Faith, “Bounded prime rings, pseudo-frobenius rings, the Jacobson radical of a ring,” Lect. Notes Math.,700, 218–223 (1979).Google Scholar
  449. 449.
    C. Faith, “Injective quotient rings of commutative rings,” Lect. Notes Math.,700, 151–203 (1979).Google Scholar
  450. 450.
    C. Faith, “Self-injective rings,” Proc. Am. Math. Soc.,77, No. 2, 157–164 (1979).Google Scholar
  451. 451.
    C. Faith, “The genus of a module and generic families of rings,” in: Ring Theory. Proc. Antwerp Conf., 1978, New York-Basel (1979), pp. 613–629.Google Scholar
  452. 452.
    H. K. Farahat, “Homological dimension and Abelian groups,” Lect. Notes Math.,616, 379–383 (1977).Google Scholar
  453. 453.
    S. Feigelstock, “A characterization of Prüfer rings,” J. Reine Angew. Math.,282, 131–132 (1976).Google Scholar
  454. 454.
    S. Feigelstock, “On modules over Dedekind rings,” Acta Sci. Math.,39, Nos. 3–4, 255–263 (1977).Google Scholar
  455. 455.
    M. H. Fenrick, “Rings for which all preradicals have finite length,” Commun. Algebra,7, No. 17, 1805–1815 (1979).Google Scholar
  456. 456.
    D. Ferrand, “Les modules projectifs de type fini sur un anneau de polynomes sur un corps sont libres (d'après Quillen et Suslin),” Lect. Notes Math.,567, 202–221 (1977).Google Scholar
  457. 457.
    D. J. Fieldhouse, “Semihereditary rings,” Publ. Math.,25, Nos. 3–4, 211 (1978).Google Scholar
  458. 458.
    E. Fisher, “Powers of saturated modules,” J. Symb. Logic,37, No. 4, 777 (1972).Google Scholar
  459. 459.
    E. R. Fisher, “Abelian structures. I,” Lect. Notes Math.,616, 270–322 (1977).Google Scholar
  460. 460.
    J. R. Fisher, “Goldie theorem for differentiably prime rings,” Pac. J. Math.,58, No. 1, 71–77 (1975).Google Scholar
  461. 461.
    J. W. Fisher, “Problem session on regular rings,” Lect. Notes Math.,545, 195–199 (1976).Google Scholar
  462. 462.
    M. Flamant, “Une nouvelle caracterisation des anneaux de Prüfer,” Publ. Dep. Math.,14, No. 4, 21–25 (1977).Google Scholar
  463. 463.
    C. Fletcher, “Remarque sur les anneaux de fractions et la factorisation,” Publ. Dep. Math.,12, No. 1, 1–3 (1975).Google Scholar
  464. 464.
    P. Fleury, “On local QF rings,” Aequat. Math.,16, Nos. 1–2, 173–179 (1977).Google Scholar
  465. 465.
    J. Flood, “Pontryagin duality for topological modules,” Proc. Am. Math. Soc.,75, No. 2, 329–333 (1979).Google Scholar
  466. 466.
    M. Fontana, “Absolutely flat Baer rings,” Boll. Unione Mat. Ital.,B16, No. 2, 566–583 (1979).Google Scholar
  467. 467.
    E. Formanek, “The center of the ring of 3 x 3 generic matrices,” Linear Multilinear Algebra,7, No. 3, 203–212 (1979).Google Scholar
  468. 468.
    E. Formanek, “The center of the ring of 4 x 4 generic matrices,” J. Algebra,62, No. 2, 304–319 (1980).Google Scholar
  469. 469.
    R. Fossum and H.-B. Foxby, “The category of graded modules,” Math. Scand.,35, No. 2, 288–300 (1974).Google Scholar
  470. 470.
    D. Fox, “On localizing orderable modules,” J. Austral. Math. Soc.,A26, No. 1, 59–64 (1978).Google Scholar
  471. 471.
    H.-B. Foxby, “Injective modules under flat base change,” Proc. Am. Math. Soc.,50, 23–27 (1975).Google Scholar
  472. 472.
    A. Frei and H. Kleisli, “Shape invariant functors: application in module theory,” Math. Z.,164, No. 2, 179–183 (1978).Google Scholar
  473. 473.
    A. Fröhlich, “Locally free modules over arithmetic orders,” J. Reine Angew. Math.,274/275, 112–124 (1975).Google Scholar
  474. 474.
    L. Fuchs, “Vector spaces with valuations,” J. Algebra,35, Nos. 1–3, 23–38 (1975).Google Scholar
  475. 475.
    L. Fuchs, “Cotorsion modules over Noetherian hereditary rings,” Houston J. Math.,3, No. 1, 33–46 (1977).Google Scholar
  476. 476.
    L. Fuchs, “Vector spaces with general valuations,” in: Symp. Math. Ist. Naz. Alta Mat., Vol. 21, London-New York (1977), pp. 433–450.Google Scholar
  477. 477.
    L. Fuchs, “Subfree valued vector spaces,” Lect. Notes Math.,616, 158–167 (1977).Google Scholar
  478. 478.
    L. Fuchs, “Valued vector spaces and Abelian p-groups,” Groupe Étude Algèbre. Univ. Pierre et Marie Curie, 1976–1977,2, No. 7, 1–12 (1978).Google Scholar
  479. 479.
    L. Fuchs, “On a duality of modules over valuation rings,” Ann. Mat. Pura Appl.,117, 227–232 (1978).Google Scholar
  480. 480.
    L. Fuchs and F. Loonstra, “On a class of submodules in direct products,” Atti Accad. Naz. Lincei Rend., No. 6, 743–748 (1976).Google Scholar
  481. 481.
    L. Fuchs, E. Kirkman, and J. Kuzmanovich, “Hereditary module-finite algebras,” J. London Math. Soc.,19, No. 2, 268–276 (1979).Google Scholar
  482. 482.
    J. Fuelberth and J. Kuzmanovich, “On the structure of splitting rings,” Commun. Algebra,3, No. 10, 913–949 (1975).Google Scholar
  483. 483.
    J. Fuelberth and J. Kuzmanovich, “The structure of semiprimary and Noetherian hereditary rings,” Trans. Am. Math. Soc.,212, No. 485, 83–111 (1975).Google Scholar
  484. 484.
    J. Fuelberth and J. Kuzmanovich, “Primary direct sum decomposition,” Commun. Algebra,4, No. 3, 285–304 (1976).Google Scholar
  485. 485.
    “Split subdirect products and piecewise domains,” Can. J. Math.,28, No. 2, 408–419 (1976).Google Scholar
  486. 486.
    J. Fuelberth and J. Kuzmanovich, “On the structure of finitely generated splitting rings,” Pac. J. Math.,80, No. 2, 389–424 (1979).Google Scholar
  487. 487.
    J. Fuelberth, J. Kuzmanovich, and T. S. Shores, “Splitting torsion theories over commutative rings,” Bull. Austral. Math. Soc.,13, No. 3, 457–464 (1975).Google Scholar
  488. 488.
    K. Fujita and S. Itoh, “A note on Noetherian Hilbert rings,” Hiroshima Math. J.,10, No. 1, 153–161 (1980).Google Scholar
  489. 489.
    K. R. Fuller, “On rings whose left modules are direct sums of finitely generated modules,” Proc. Am. Math. Soc.,54, 39–44 (1976).Google Scholar
  490. 490.
    K. R. Fuller, “Weakly symmetric rings of distributive module type,” Commun. Algebra,5, No. 9, 997–1008 (1977).Google Scholar
  491. 491.
    K. R. Fuller, “Rings of left invariant module type,” Commun. Algebra,6, No. 2, 153–167 (1978).Google Scholar
  492. 492.
    K. R. Fuller, “On a generalization of serial rings. I,” in: Representation Theory of Algebras, Proc. Philadelphia Conf., New York-Basel (1979), pp. 353–367.Google Scholar
  493. 493.
    K. R. Fuller, “Biserial rings,” Lect. Notes Math.,734, 64–90 (1979).Google Scholar
  494. 494.
    K. R. Fuller, “On a generalization of serial rings. II,” Commun. Algebra,8, No. 7, 635–661 (1980).Google Scholar
  495. 495.
    K. R. Fuller, and J. Haack, “Rings with quivers that are trees,” Pac. J. Math.,76, No. 2, 371–379 (1978).Google Scholar
  496. 496.
    K. R. Fuller, J. Haack, and H. Hullinger, “Stable equivalence of uniserial rings,” Proc. Am. Math. Soc.,68, No. 2, 153–158 (1978).Google Scholar
  497. 497.
    K. R. Fuller and W. A. Shutters, “Projective modules over noncommutative semilocal rings,” Tohoku Math. J.,27, No. 3, 303–311 (1975).Google Scholar
  498. 498.
    M. R. Gabel, “Lower bounds on the stable range of polynomial rings,” Pac. J. Math., 61, No. 1, 117–120 (1975).Google Scholar
  499. 499.
    P. Gabriel, “Christine Riedtmann and the self-injective algebras of finite representation type,” in: Ring Theory. Proc. Antwerp Conf., 1978, New York-Basel (1979), pp. 453–458.Google Scholar
  500. 500.
    S. Garavaglia, “Direct product decomposition of theories of modules,” J. Symbol. Logic,44, No. 1, 77–88 (1979).Google Scholar
  501. 501.
    B. J. Gardner, “Some aspects of T-nilpotence,” Pac. J. Math.,53, 117–130 (1974).Google Scholar
  502. 502.
    B. J. Gardner, “Some aspects of T-nilpotence. II. Lifting properties over T-nilpotent ideals,” Pac. J. Math.,59, No. 2, 445–453 (1975).Google Scholar
  503. 503.
    B. J. Gardner, “A note on ring epimorphisms and polynomial identities,” Comment. Math. Univ. Carol.,20, No. 2, 293–307 (1979).Google Scholar
  504. 504.
    B. J. Gardner and P. N. Stewart, “On semisimple radical classes,” Bull. Austral. Math. Soc.,13, No. 3, 349–353 (1975).Google Scholar
  505. 505.
    A. V. Geramita and Ch. Small, Introduction to Homological Methods in Commutative Rings, Queen's Papers Pure Appl. Math., No. 43 (1976).Google Scholar
  506. 506.
    L. J. Gerstein, “A local approach to matric equivalence,” Linear Algebra Appl.,16, No. 3, 221–232 (1977).Google Scholar
  507. 507.
    R. Gilmer, “Modules that are finite sums of simple submodules,” Publ. Math.,24, Nos. 1–2, 5–8 (1977).Google Scholar
  508. 508.
    R. Gilmer and A. Grams, “Finite intersections of quotient rings of a Dedekind domain,” J. London Math. Soc.,12, No. 3, 257–261 (1976).Google Scholar
  509. 509.
    R. Gilmer and W. Heinzer, “The Noetherian property for quotient rings of infinite polynomial rings,” Proc. Am. Math. Soc.,76, No. 1, 1–7 (1979).Google Scholar
  510. 510.
    R. Gilmer and J. F. Hoffmann, “A characterization of Prüfer domains in terms of polynomials,” Pac. J. Math.,60, No. 1, 81–85 (1975).Google Scholar
  511. 511.
    S. M. Ginn, “A counterexample to a theorem of Kurshan,” J. Algebra,40, No. 1, 105–106 (1976).Google Scholar
  512. 512.
    S. M. Ginn and P. B. Moss, “A decomposition theorem for Noetherian orders in artinian rings,” Bull. London Math. Soc.,9, No. 2, 177–181 (1977).Google Scholar
  513. 513.
    S. Glaz and W. V. Vasconcelos, “Flat ideals. II,” Manuscripta Math.,22, No. 4, 325–341 (1977).Google Scholar
  514. 514.
    V. K. Goel and S. K. Jain, “π-injective modules and rings whose cyclics are π-injective,” Commun. Algebra,6, No. 1, 59–73 (1978).Google Scholar
  515. 515.
    V. K. Goel and S. K. Jain, “Semiperfect rings with quasiprojective left ideals,” Math. J. Okayama Univ.,19, No. 1, 39–43 (1976).Google Scholar
  516. 516.
    V. K. Goel, S. K. Jain, and S. Singh, “Rings whose cyclic modules are injective or projective,” Proc. Am. Math. Soc.,53, No. 1, 16–18 (1975).Google Scholar
  517. 517.
    V. K. Goel, S. K. Jain, and S. Singh, “Semiprime rings with finite length w.r.t. an idempotent kernel functor,” Israel J. Math.,28, Nos. 1–2, 110–112 (1977).Google Scholar
  518. 518.
    J. S. Golan, “Matching torsion and cotorsion theories,” Glasgow Math. J.,15, 176–179 (1974).Google Scholar
  519. 519.
    J. S. Golan, “Modules satisfying both chain conditions with respect to a torsion theory,” Proc. Am. Math. Soc.,52, 103–108 (1975).Google Scholar
  520. 520.
    J. S. Golan, “On the maximal support of a module,” Commun. Algebra,4, No. 3, 219–231 (1976).Google Scholar
  521. 521.
    J. S. Golan, “Some functors arising from the consideration of torsion theories over noncommutative rings,” Bull. Austral. Math. Soc.,15, No. 3, 455–460 (1976).Google Scholar
  522. 522.
    J. S. Golan, “Decomposition and dimension in module categories,” Lecture Notes Pure Appl. Math., Vol. 33, Marcel Dekker, New York-Basel (1977).Google Scholar
  523. 523.
    J. S. Golan, “Quelques utilisations des formules de Camillo-Zelmanowitz,” C. R. Acad. Sci.,286, No. 17, A731-A734 (1978).Google Scholar
  524. 524.
    J. S. Golan, “The lattice of torsion theories associated with a ring,” in: Ring Theory. Proc. Antwerp Conf., 1977, New York-Basel (1978), pp. 25–43.Google Scholar
  525. 525.
    J. S. Golan, “Rings having a composition series with respect to a torsion theory,” Commun. Algebra,7, No. 6, 611–623 (1979).Google Scholar
  526. 526.
    J. S. Golan, “Semisimple artinian rings of quotients,” Am. Math. Men.,86, No. 6, 474–475 (1979).Google Scholar
  527. 527.
    J. S. Golan, “Colocalization at idempotent ideals,” in: Ring Theory. Proc. Antwerp Conf., 1978, New York-Basel (1979), pp. 631–668.Google Scholar
  528. 528.
    J. S. Golan, “Some torsion theories are compact,” Math. Jpn.,24, No. 6, 635–639 (1979).Google Scholar
  529. 529.
    J. S. Golan and R. W. Miller, “Cotorsion free modules and colocalizations,” Commun. Algebra,6, No. 12, 1217–1230 (1978).Google Scholar
  530. 530.
    J. S. Golan, J. Raynaud, and F. van Oystaeyen, “Sheaves over the spectra of certain noncommutative rings,” Commun. Algebra,4, No. 5, 491–502 (1976).Google Scholar
  531. 531.
    A. Goldie, “Reduced rank on modules, application to some theorems on Noetherian rings,” in: Ring Theory. Proc. Antwerp Conf., 1977, New York-Basel (1978), pp. 45–58.Google Scholar
  532. 532.
    A. Goldie and G. Krause, “Artinian quotient rings of ideal invariant Noetherian rings,” J. Algebra,63, No. 2, 374–388 (1980).Google Scholar
  533. 533.
    B. Goldsmith, “Endomorphism rings of torsion-free modules over a complete discrete valuation ring,” J. London Math. Soc.,18, No. 3, 464–471 (1978).Google Scholar
  534. 534.
    B. Goldston and A. C. Mewborn, “A structure sheaf for a noncommutative Noetherian ring,” Bull. Am. Math. Soc.,81, No. 5, 944–946 (1975).Google Scholar
  535. 535.
    K. R. Goodearl, “Global dimension of differential operator rings. II,” Trans. Am. Math. Soc.,209, No. 482, 65–85 (1975); III. J. London Math. Soc.,17, No. 3, 397–409 (1978).Google Scholar
  536. 536.
    K. R. Goodearl, Ring Theory. Nonsingular Rings and Modules, Marcel Dekker, New York-Basel (1976).Google Scholar
  537. 537.
    K. R. Goodearl, “Completions of regular rings. I,” Math. Ann.,220, No. 3, 229–252 (1976).Google Scholar
  538. 538.
    K. R. Goodearl, “Direct sum properties of quasiinjective modules,” Bull. Am. Math. Soc.,82, No. 1, 108–110 (1976).Google Scholar
  539. 539.
    K. R. Goodearl, “Power-cancellation of groups and modules,” Pac. J. Math.,64, No. 2, 387–412 (1976).Google Scholar
  540. 540.
    K. R. Goodearl, “Regular rings and rank functions,” Lect. Notes Math.,545, 83–104 (1976).Google Scholar
  541. 541.
    K. R. Goodearl, “Power-cancellation of modules,” in: Ring Theory. II. Proc. 2nd Okla. Conf., 1975, New York-Basel (1977), pp. 131–147.Google Scholar
  542. 542.
    K. R. Goodearl, “Completions of regular rings. II,” Pac. J. Math.,72, No. 2, 423–640 (1977).Google Scholar
  543. 543.
    K. R. Goodearl, “Centers of regular self-injective rings,” Pac. J. Math.,76, No. 2, 381–395 (1978).Google Scholar
  544. 544.
    K. R. Goodearl, Von Neumann Regular Rings, Pitman, London-San Francisco-Melbourne (1979).Google Scholar
  545. 545.
    K. R. Goodearl, “Artinian and Noetherian modules over regular rings,” Commun. Algebra,8, No. 5, 477–504 (1980).Google Scholar
  546. 546.
    K. R. Goodearl and A. K. Boyle, Dimension Theory for Nonsingular Injective Modules, Mem. AMS, No. 177 (1976).Google Scholar
  547. 547.
    K. R. Goodearl and D. Handelman, “Simple self-injective rings,” Commun. Algebra,3, No. 9, 797–834 (1975).Google Scholar
  548. 548.
    K. R. Goodearl and R. B. Warfield, Jr., “Algebras over zero-dimensional rings,” Math. Ann.,223, No. 2, 157–168 (1978).Google Scholar
  549. 549.
    K. R. Goodearl and R. B. Warfield, Jr., “Simple modules over hereditary Noetherian prime rings,” J. Algebra,57, No. 1, 82–100 (1979).Google Scholar
  550. 550.
    R. Gordon, “Some aspects of noncommutative Noetherian rings,” Lect. Notes Math.,545, 105–127 (1976).Google Scholar
  551. 551.
    R. Gordon and E. Green, “A representation theory for Noetherian rings,” J. Algebra,39, No. 1, 100–130 (1976).Google Scholar
  552. 552.
    R. Gordon and E. Green, “Indecomposable modules with cores,” Bull. Am. Math. Soc.,82, No. 4, 590–592 (1976).Google Scholar
  553. 553.
    R. Gordon and E. Green, “Indecomposable modules: amalgamations,” Bull. Am. Math. Soc.,82, No. 6, 884–887 (1976).Google Scholar
  554. 554.
    R. Gordon and E. Green, “Modules with cores and amalgamations of indecomposable modules,” Mem. Am. Math. Soc., No. 187 (1977).Google Scholar
  555. 555.
    S. Goto and K. Watanabe, “On graded rings. 1,” J. Math. Soc. Jpn.,30, No. 2, 179–213 (1978).Google Scholar
  556. 556.
    S. Goto and K. Watanabe, “On graded rings. 2. (Zn graded rings),” Tokyo J. Math.,1, No. 2, 237–261 (1978).Google Scholar
  557. 557.
    J. Goursaud, “Sur les V-anneaux réguliers,” Sem. Alg. Noncommutative, 1975–1976, Paris XI, Orsay (1976).Google Scholar
  558. 558.
    S. Goto and L. Jeremy, “Un anneau régulier continu à gauche et ℵ0-continu à droite est continu,” C. R. Acad. Sci.,283, No. 11, A807-A808 (1976).Google Scholar
  559. 559.
    S. Goto and L. Jeremy, “Une notion de rang dans les facteurs réguliers autoinjectifs à droite,” Commun. Algebra,5, No. 8, 829–839 (1977).Google Scholar
  560. 560.
    S. Goto, J. Osterburg, J.-L. Pascaud, and J. Valette, “Points fixes des anneaux réguliers autoinjectifs,” C. R. Acad. Sci.,A290, No. 21, 985–988 (1980).Google Scholar
  561. 561.
    S. Goto and J.-L. Pascaud, “Anneaux semihereditaires,” C. R. Acad. Sci.,A284, No. 1, 583–586 (1977).Google Scholar
  562. 562.
    S. Goto and J.-L. Pascaud, “Anneaux de polynomes semihereditaires,” Lect. Notes Math.,734, 131–157 (1979).Google Scholar
  563. 563.
    S. Goto and J. Valette, “Sur l'enveloppe des anneaux de groupes réguliers,” Bull. Soc. Math. France,103, No. 1, 91–102 (1975).Google Scholar
  564. 564.
    S. Goto and J. Valette, “Sur les anneaux de groupe hereditaires,” Lect. Notes Math.,740, 432–443 (1979).Google Scholar
  565. 565.
    S. Grabiner, “Finitely generated Noetherian and Artinian Banach modules,” Indiana Univ. Math. J.,26, No. 3, 413–426 (1977).Google Scholar
  566. 566.
    E. L. Green, “A note on modules with waists,” Ill. J. Math.,21, No. 2, 385–387 (1977).Google Scholar
  567. 567.
    E. L. Green, “Diagrammatic techniques in the study of indecomposable modules,” in: Ring Theory 2. Proc 2nd Okla. Conf., 1975, New York-Basel (1977), pp. 149–169.Google Scholar
  568. 568.
    E. L. Green, “On the structure of indecomposable modules,” in: Represent. Theory Algebras. Proc. Philadelphia Conf., New York-Basel (1978), pp. 369–380.Google Scholar
  569. 569.
    E. L. Green, “Frobenius algebras and their quivers,” Can. J. Math.,30, No. 5, 1029–1044 (1978).Google Scholar
  570. 570.
    E. L. Green, “On the decomposability of amalgamated sums,” J. Pure Appl. Algebra,14, No. 3, 259–272 (1979).Google Scholar
  571. 571.
    E. L. Green and I. Reiten, “On the construction of ring extensions,” Glasgow Math. J.,17, No. 1, 1–11 (1976).Google Scholar
  572. 572.
    B. Greenberg, “Coherence in Cartesian squares,” J. Algebra,50, No. 1, 12–25 (1978).Google Scholar
  573. 573.
    B. Greenberg and W. V. Vasconcelos, “Coherence of polynomial rings,” Proc. Am. Math. Soc.,54, 59–64 (1976).Google Scholar
  574. 574.
    R. P. Grimaldi, “Baer and UT-modules over domains,” Pac. J. Math.,54, No. 2, 59–72 (1974).Google Scholar
  575. 575.
    K. M. Gruenberg and K. W. Roggenkamp, “Extension categories of groups and modules. I. Essential covers,”49, No. 2, 564–594 (1977).Google Scholar
  576. 576.
    L. Grünenfelder, “On the homology of filtered and graded rings,” J. Pure Appl. Algebra,14, No. 1, 21–37 (1979).Google Scholar
  577. 577.
    L. Gruson and Ch. U. Jensen, “Deux applications de la notion de L-dimension,” C. R. Acad. Sci.,A282, No. 1, 23–25 (1976).Google Scholar
  578. 578.
    J. Guérindon, “On the linearly compact envelope, Queen's Pap.,” Pure Appl. Math., No. 42, 249–252 (1975).Google Scholar
  579. 579.
    J. Guérindon, “Séries restreintes et compacité linéaire,” Semin. P. Dubreil. Algèbre. Univ. Pierre et Marie Curie,28, 7/1–7/6 (1974–1975).Google Scholar
  580. 580.
    J. Guérindon, “Sur les modules linéairement compactés,” Groupe Étude Algèbre. Univ. Pierre et Marie Curie, 1976–1977,2, 1/01–1/08 (1978).Google Scholar
  581. 581.
    J. Guérindon, “Décomposition canonique d'un module artinien,” C. R. Acad. Sci.,286, No. 20, A867-A869 (1978).Google Scholar
  582. 582.
    W. H. Gustafson, “Remark on relatively projective modules,” Math. Jpn.,16, 21–24 (1971).Google Scholar
  583. 583.
    W. H. Gustafson, P. R. Halmos, and J. M. Zelmanowitz, “The Serre conjecture,” Am. Math. Mon.,85, No. 5, 357–359 (1978).Google Scholar
  584. 584.
    J. K. Haack, “Self-duality and serial rings,” J. Algebra,59, No. 2, 345–363 (1979).Google Scholar
  585. 585.
    A. Hagnany, “Reflective modules over certain differential polynomial rings,” Proc. Am. Math. Soc.,73, No. 3, 313–318 (1979).Google Scholar
  586. 586.
    D. Handelman, “Simple regular rings with a unique rank function,” J. Algebra,42, No. 1, 60–80 (1976).Google Scholar
  587. 587.
    D. Handelman, “Perspectivity and cancellation in regular rings,” J. Algebra,48, No. 1, 1–16 (1977).Google Scholar
  588. 588.
    A. Hanna and S. Khuri, “Modules with irredundant sets of cogenerators,” Rend. 1st Mat. Univ. Trieste,9, Nos. 1–2, 38–45 (1977).Google Scholar
  589. 589.
    J. Hannah, “Maximal quotient rings of prime group algebras. 2. Uniform right ideals,” J. Austral. Math. Soc.,A24, No. 3, 339–349 (1977).Google Scholar
  590. 590.
    J. Hannah, “Quotient rings of subgroup algebras,” Bull. London Math. Soc.,10, No. 1, 81–83 (1978).Google Scholar
  591. 591.
    J. Hannah, “Maximal quotient rings of prime nonsingular algebras,” Bull. Austral. Math. Soc.,18, No. 2, 305–306 (1978).Google Scholar
  592. 592.
    J. Hannah, “Simple quotient rings of group algebras,” J. Algebra,59, No. 1, 188–201 (1979).Google Scholar
  593. 593.
    J. Hannah and K. C. O'Meara, “Maximal quotient rings of prime group algebras,” Proc. Am. Math. Soc.,65, No. 1, 1–7 (1977).Google Scholar
  594. 594.
    F. T. Hannick, “Some notes on left coherent rings,” Proc. Mont. Acad. Sci.,38, 107–110 (1979).Google Scholar
  595. 595.
    F. Hansen, “Schranken für die Gabriel- und Krull-Dimension Idealisatorähnlicher Ringerweiterungen,” Arch. Math.,28, No. 6, 584–593 (1977).Google Scholar
  596. 596.
    F. Hansen, “Ringerweiterungen und lokalisation,” Commun. Algebra,7, No. 7, 689–751 (1979).Google Scholar
  597. 597.
    F. Hansen and M. L. Teply, “On the Gabriel dimension and subidealizer rings,” Lect. Notes Math.,700, 95–118 (1979).Google Scholar
  598. 598.
    M. Harada, “On the exchange property in a direct sum of indecomposable modules,” Osaka J. Math.,12, No. 3, 719–736 (1975).Google Scholar
  599. 599.
    M. Harada, “On a minimal chain of iterated idealizers from an HNP-ring,” J. London Math. Soc.,12, No. 2, 183–191 (1976).Google Scholar
  600. 600.
    M. Harada, “A ring theoretical proof in a factor category of indecomposable modules,” J. Math. Soc. Jpn.,28, No. 1, 160–167 (1976).Google Scholar
  601. 601.
    M. Harada, “On small submodules in the total quotient ring of a commutative ring,” Rev. Union Mat. Argent.,28, No. 2, 99–102 (1977).Google Scholar
  602. 602.
    M. Harada, “Small submodules in a projective module and semi-T-nilpotent sets,” Osaka J. Math.,14, No. 2, 355–364 (1977).Google Scholar
  603. 603.
    M. Harada, “A note on hollow modules,” Rev. Union. Mat. Argent.,28, Nos. 3–4 (1977–1978).Google Scholar
  604. 604.
    M. Harada, “On the small hulls of a commutative rings,” Osaka J. Math.,15, 679–682 (1978).Google Scholar
  605. 605.
    M. Harada, “On small ring homomorphisms,” Osaka J. Math.,15, No. 2, 365–370 (1978).Google Scholar
  606. 606.
    M. Harada, “Nonsmall modules and noncosmall modules,” in: Ring Theory. Proc. Antwerp Conf., 1978, New York-Basel (1979), pp. 669–690.Google Scholar
  607. 607.
    M. Harada and T. Ishii, “On perfect rings and the exchange property,” Osaka J. Math.,12, No. 2, 483–491 (1975).Google Scholar
  608. 608.
    B. Hartley, “Uncountable artinian modules and uncountable soluble groups satisfying Min-n,” Proc. London Math. Soc.,35, No. 1, 55–75 (1977).Google Scholar
  609. 609.
    B. Hartley, “Ihjective modules over group rings,” Q. J. Math.,28, No. 109, 1–29 (1977).Google Scholar
  610. 610.
    H. Harui, “Remarks on injective modules over commutative regular rings,” Bull. Fukuoka Univ. Educ. Nat. Sci.,25, 1–8 (1975).Google Scholar
  611. 611.
    H. Harui, “On torsion-free injective modules,” Bull. Fukuoka Univ. Educ. Nat. Sci.,26, 1–11 (1976).Google Scholar
  612. 612.
    H. Harui, “Decompositions of injective modules over non-Noetherian rings,” Acta Math. Hungar.,30, Nos. 3–4, 203–217 (1977).Google Scholar
  613. 613.
    J. Hauger, “Aufsteigende Kettenbedingung für zyklische Moduln und perfekte Endomorphismenringe,” Acta Math. Acad. Sci. Hung.,28, Nos. 3–4, 275–278 (1976).Google Scholar
  614. 614.
    J. Hauger, “Injektive Moduln über Ringen linearer Differentialoperatoren,” Monatsh. Math.,86, No. 3, 189–201 (1978).Google Scholar
  615. 615.
    J. Hauger and W. Zimmermann, “Lokalisierung und Moritas Fh-bedingung,” Commun. Algebra,4, No. 3, 199–217 (1976).Google Scholar
  616. 616.
    G. J. Hauptfleisch and D. Döman, “Filtered projective and semiflat modules,” Quastiones Math.,1, No. 2, 197–217 (1976).Google Scholar
  617. 617.
    G. J. Hauptfleisch and F. Loonstra, “On modules over rings of type (n, k),” Acta Math. Acad. Sci. Hung.,31, Nos. 1–2, 15–19 (1978).Google Scholar
  618. 618.
    M. Hazenwinkel, “Constructing formal groups. VIII: Formal A-modules,” Compos. Math.,38, No. 3, 277–291 (1979).Google Scholar
  619. 619.
    M. Hazenwinkel, “Infinite dimensional universal formal group laws and formal A-modules,” Lect. Notes Math.,732, 124–143 (1979).Google Scholar
  620. 620.
    J. R. Hedstrom, “Integral closure of generalized quotient rings,” Math. Nachr.,69, 145–148 (1975).Google Scholar
  621. 621.
    J. Henderson and M. Orzech, “Cotorsion modules for torsion theories,” Port. Math.,36, 33–40 (1977).Google Scholar
  622. 622.
    D. Hill, “The structure of semilocal HQ-rings,” J. London Math. Soc.,12, No. 2, 129–132 (1975–1976).Google Scholar
  623. 623.
    D. Hill, “Endomorphism rings of hereditary modules,” Arch. Math.,28, No. 1, 63–66 (1977).Google Scholar
  624. 624.
    P. Hill, “Criteria for freeness in groups and valuated vector spaces,” Lect. Notes Math.,616, 140–157 (1977).Google Scholar
  625. 625.
    H. L. Hiller, “Derived functors of torsion,” Can. Math. Bull.,19, No. 1, 63–66 (1976).Google Scholar
  626. 626.
    H. L. Hiller, “Radicals and local freeness,” Arch. Math.,32, No. 2, 123–127 (1979).Google Scholar
  627. 627.
    Y. Hirano, “On Fitting's lemma,” Hiroshima Math. J.,9, No. 3, 623–626 (1979).Google Scholar
  628. 628.
    Y. Hirano, Sh. Ikehata, and H. Tominaga, “Commutativity theorems of Outcalt-Yaqub type,” Math. J. Okayama Univ.,21, No. 1, 21–24 (1979).Google Scholar
  629. 629.
    Y. Hirano and Sh. Ikehata, “Regular rings, V-rings, and their generalizations,” Hiroshima Math. J.,9, No. 1, 137–149 (1979).Google Scholar
  630. 630.
    V. A. Hiremath, “Finitely projective modules over a Dedekind domain,” J. Austral. Math. Soc.,A26, No. 3, 330–336 (1978).Google Scholar
  631. 631.
    V. A. Hiremath, “On cofinitely injective modules,” J. London Math. Soc.,17, No. 1, 28–32 (1978).Google Scholar
  632. 632.
    M. Hochster, “Cyclic purity versus purity in excellent Noetherian rings,” Trans. Am. Math. Soc.,231, No. 2, 463–488 (1977).Google Scholar
  633. 633.
    A. Horn, “Quasi-Frobenius quotient rings of group rings,” J. Austral. Math. Soc.,20, No. 4, 394–397 (1975).Google Scholar
  634. 634.
    A. Horn, “Twisted group rings and quasi-Frobenius quotient rings,” Arch. Math.,26, No. 6, 581–587 (1975).Google Scholar
  635. 635.
    J. A. Huckaba and J. M. Keller, “Annihilation of ideals in commutative rings,” Pac. J. Math.,83, No. 2, 375–379 (1979).Google Scholar
  636. 636.
    A. Hudry, “Épimorphisms plats à buts locaux, quasilocaux et semilocaux,” Publs. Dep. Math.,12, No. 2, 31–41 (1975).Google Scholar
  637. 637.
    A. Hudry, “Sur la théorie des idéaux dans les anneaux premiers à identité polynomiale,” Arch. Math.,31, No. 5, 443–450 (1979).Google Scholar
  638. 638.
    H. L. Hullinger, “Stable equivalence and rings whose modules are a direct sum of finitely generated modules,” J. Pure Appl. Algebra,16, No. 3, 265–273 (1980).Google Scholar
  639. 639.
    R. Hunter, F. Richman, and E. Walker, “Warfield modules,” Lect. Notes Math.,616, 87–123 (1977).Google Scholar
  640. 640.
    J. Hutchinson and M. Fenrick, “Primary decompositions and Morita contexts,” Commun. Algebra,6, No. 13, 1359–1368 (1978).Google Scholar
  641. 641.
    J. Hutchinson and D. R. Turnridge, “Morita equivalent quotient rings,” Commun. Algebra,4, No. 7, 669–675 (1976).Google Scholar
  642. 642.
    J. D. Ion and C. Nastasescu, “Anneaux gradués semisimples,” C. R. Acad. Sci.,283, No. 16, A1077-A1080 (1976).Google Scholar
  643. 643.
    J. D. Ion and C. Nastasescu, “Anneaux gradués semisimples,” Rev. Roum. Math. Pures Appl.,23, No. 4, 573–588 (1978).Google Scholar
  644. 644.
    B. W. Irlbeck, “Finitely generated projective ideals in commutative rings,” J. Reine Angew. Math.,298, 98–100 (1978).Google Scholar
  645. 645.
    R. S. Irving, “Generic flatness and the nullstellensatz for Ore extensions,” Commun. Algebra,7, No. 3, 259–277 (1979).Google Scholar
  646. 646.
    R. S. Irving, “Noetherian algebras and the Nullstellensatz,” Lect. Notes Math.,740, 80–87 (1979).Google Scholar
  647. 647.
    R. S. Irving, “An algebra whose simple modules are of arbitrary finite degree,” in: Ring Theory. Proc. Antwerp Conf., 1978, New York-Basel (1979), pp. 87–96.Google Scholar
  648. 648.
    R. S. Irving, “Finitely generated simple Ore domains with big centres,” Bull. London Math. Soc.,12, No. 3 (1980).Google Scholar
  649. 649.
    M. Ishibashi, “A formulation of cancellation theory and its application to modules,” Comment. Math. Univ. St. Pauli,27, No. 1, 43–50 (1978).Google Scholar
  650. 650.
    T. Ishii, “On locally direct summands of modules,” Osaka J. Math.,12, No. 2, 473–482 (1975).Google Scholar
  651. 651.
    G. Ivanov, “Decompositions of modules over serial rings,” Commun. Algebra,3, No. 11, 1031–1036 (1975).Google Scholar
  652. 652.
    Y. Iwanaga, “On rings with self-injective dimension ≤ 1,” Osaka J. Math.,15, 33–46 (1978).Google Scholar
  653. 653.
    Y. Iwanaga, “On rings with finite self-injective dimension,” Commun. Algebra,7, No. 4, 393–414 (1979).Google Scholar
  654. 654.
    T. Izawa, “A module whose double centralizer is semiprimary QF-3,” Repts. Fac. Sci. Shizuoka Univ.,10, 3–8 (1975).Google Scholar
  655. 655.
    T. Izawa, “Torsion theories and torsionless generators,” Repts. Fac. Sci. Shizuoka Univ.,11, 1–8 (1976).Google Scholar
  656. 656.
    T. Izawa, “Injectors and projectors relative to torsion theory,” Repts. Fac. Sci. Shizuoka Univ.,12, 19–26 (1978).Google Scholar
  657. 657.
    G. Jacob, “Sur certaines catégories de modules, généralisant les modules de type fini et les modules noéthériens,” C. R. Acad. Sci.,283, No. 9, 687–690 (1976).Google Scholar
  658. 658.
    N. Jacobson, K. McCrimmon, and M. Parvathi, “Localization of Jordan algebras,” Commun. Algebra,6, No. 9, 911–958 (1978).Google Scholar
  659. 659.
    S. K. Jain, “Rings whose cyclic modules have certain properties and the duals,” in: Ring Theory. Proc. Conf. Ohio Univ., Athens, Ohio, 1976, Lect. Notes Pure Appl. Math., Vol. 25, Marcel Dekker, New York (1977), pp. 143–160.Google Scholar
  660. 660.
    S. K. Jain and S. Singh, “Rings with quasiprojective left ideals,” Pac. J. Math.,60, No. 1, 169–181 (1975).Google Scholar
  661. 661.
    S. K. Jain, S. Singh, and R. G. Symonds, “Rings whose proper cyclic modules are quasiinjective,” Pac. J. Math.,67, No. 2, 461–472 (1976).Google Scholar
  662. 662.
    M. F. Janowitz, “A note on Rickart rings and semi-Boolean algebras,” Algebra Univ.,6, No. 1, 9–12 (1976).Google Scholar
  663. 663.
    W. G. Jansen, “FSP rings and modules and local modules,” Commun. Algebra,6, No. 6, 617–637 (1978).Google Scholar
  664. 664.
    G. J. Janusz, “Tensor products of orders,” J. London Math. Soc.,20, No. 2, 181–192 (1979).Google Scholar
  665. 665.
    A. V. Jategaonkar, “Structure and classification of hereditary Noetherian prime rings,” in: Ring Theory, Proc. Conf., Park City, Utah, 1971, Academic Press, New York (1972), pp. 171–229.Google Scholar
  666. 666.
    A. V. Jategaonkar, “Principal ideal theorem for noetherian PI-rings,” J. Algebra,35, Nos. 1–3, 17–22 (1975).Google Scholar
  667. 667.
    A. V. Jategaonkar, “Certain injectives are artinian,” Lect. Notes Math.,545, 128–139 (1976).Google Scholar
  668. 668.
    A. Jebli, “Corps des fractions et topologies linéaires,” Thèse Doct. Sci. Math. Univ. Rennes, 1975.Google Scholar
  669. 669.
    C. U. Jensen, “Peano rings of arbitrary global dimension,” J. London Math. Soc.,21, No. 1, 39–44 (1980).Google Scholar
  670. 670.
    C. U. Jensen, “Applications logiques en théorie des anneaux et des modules,” Conf. Colloque d'Algèbre a Rennes, May 28–31, 1980.Google Scholar
  671. 671.
    C. U. Jensen and P. Vamos, “On the axiomatizability of certain classes of modules,” Math. Z.,167, No. 3, 227–237 (1979).Google Scholar
  672. 672.
    L. Jeremy, “Une notion de rang des facteurs réguliers autoinjectifs à droite,” Sem. Alg. Non Commutative, 1975–1976, No. 4, Paris XI, Orsay (1976).Google Scholar
  673. 673.
    L. Jeremy, “Modules π-projectifs,” Sem. Alg. Commutative, 1975–1976, No. 12, Parix XI, Orsay (1976).Google Scholar
  674. 674.
    L. Jeremy, “L'arithmétique de von Neumann pour les facteurs injectifs,” J. Algebra,62, No. 1, 154–169 (1980).Google Scholar
  675. 675.
    M. I. Jinnah, “Reflexive modules over regular local rings,” Arch. Math.,26, No. 4, 367–371 (1975).Google Scholar
  676. 676.
    M. I. Jinnah, “A note on PG-modules,” Math. Scand.,37, No. 1, 27–28 (1975).Google Scholar
  677. 677.
    J. Jirasko, “Pseudohereditary and pseudocohereditary preradicals,” Comment. Math. Univ. Carol.,20, No. 2, 317–327 (1979).Google Scholar
  678. 678.
    J. Jirasko, “Generalized projectivity. II,” Comment. Math. Univ. Carol.,20, No. 3, 483–499 (1979).Google Scholar
  679. 679.
    H. Jiraskova, “Generalized flatness and coherence,” Comment. Math. Univ. Carol.,21, No. 2, 293–300 (1980).Google Scholar
  680. 680.
    H. Jiraskova and J. Jirasco, “Generalized projectivity,” Czech. Mat. J.,28, No. 4, 632–646 (1978).Google Scholar
  681. 681.
    B. Johns, “Annihilator conditions in Noetherian rings,” J. Algebra,49, No. 1, 222–224 (1977).Google Scholar
  682. 682.
    J. L. Johnson, “Modules injective with respect to primes,” Commun. Algebra,7, No. 3, 327–332 (1977).Google Scholar
  683. 683.
    S. Jondrup, “Projective modules,” Proc. Am. Math. Soc.,59, No. 2, 217–221 (1976).Google Scholar
  684. 684.
    S. Jondrup, “The centre of a right hereditary ring,” J. London Math. Soc.,15, No. 2, 211–212 (1977).Google Scholar
  685. 685.
    S. Jondrup, “Flat and projective modules,” Math. Scand.,43, No. 2, 336–342 (1978).Google Scholar
  686. 686.
    S. Jondrup, “Rings of quotients of some semiprime P. I. rings,” Commun. Algebra,7, No. 3, 279–286 (1979).Google Scholar
  687. 687.
    S. Jondrup, “Indecomposable modules,” in: Ring Theory. Proc. Antwerp Conf., 1978, New York-Basel (1979), pp. 97–104.Google Scholar
  688. 688.
    S. Jondrup, “Homological dimensions of some P. I. rings,” Commun. Algebra,8, No. 7, 685–696 (1980).Google Scholar
  689. 689.
    S. Jondrup and C. Ringel, “Remarks on a paper by Skornyakov concerning ring for which every module is a direct sum of s left ideals,” Arch. Math.,31, No. 4, 329–331 (1978).Google Scholar
  690. 690.
    D. A. Jordan, “A left Noetherian right Ore domain which is not right Noetherian,” Bull. London Math. Soc.,12, No. 3, 202–204 (1980).Google Scholar
  691. 691.
    J. Kado, “Note on exchange property,” Math. J. Okayama Univ.,18, No. 2, 153–157 (1976).Google Scholar
  692. 692.
    M. Kamil, “On quasi-artinian rings,” Rend. Math.,9, No. 4, 617–619 (1976).Google Scholar
  693. 693.
    M. Kamil, “On simple injective rings,” Rend. Math.,9, No. 4, 613–615 (1976).Google Scholar
  694. 694.
    M.-Ch. Kang, “Projective modules over some polynomial rings,” J. Algebra,59, No. 1, 65–76 (1979).Google Scholar
  695. 695.
    H. I. Karakas, “On Noetherian modules,” METU J. Pure Appl. Sci.,5, No. 2, 165–168 (1972).Google Scholar
  696. 696.
    F. Kasch, Moduln und Ringe, B. G. Teubner, Stuttgart (1977).Google Scholar
  697. 697.
    T. Kato, “Structure of dominant modules,” J. Algebra,39, No. 2, 569–570 (1976).Google Scholar
  698. 698.
    T. Kato, “Duality between colocalization and localization,” J. Algebra,55, No. 2, 351–374 (1978).Google Scholar
  699. 699.
    Y. Kawada, “On dominant modules and dominant rings,” in: Proc. Tenth Symp. Ring Theory, Matsumoto, 1977, Okayama (1978), pp. 62–82.Google Scholar
  700. 700.
    Y. Kawada, “On dominant modules and dominant rings,” J. Algebra,56, No. 2, 409–435 (1979).Google Scholar
  701. 701.
    G. O. Kenny, “The completion of an Abelian L-group,” Can. J. Math.,27, No. 5, 980–985 (1975).Google Scholar
  702. 702.
    T. Kepka, “Torsion theories and homological dimensions,” Stud. Alg. Anwend.,1, 41–44 (1976).Google Scholar
  703. 703.
    T. Kepka, “Notes on quasimodules,” Comment. Math. Univ. Carol.,20, No. 2, 229–247 (1979).Google Scholar
  704. 704.
    T. Kepka and P. Němec, “Quasimodules generated by three elements,” Comment. Math. Univ. Carol.,20, No. 2, 249–266 (1979).Google Scholar
  705. 705.
    T. Kepka and P. Nemec, “Trilinear construction of quasimodules,” Comment. Math. Univ. Carol.,21, No. 2, 341–354 (1980).Google Scholar
  706. 706.
    O. Kerner, “Ringe mit verallgemeinerter Kupischreihe. I, II,” J. Reine Angew. Math.,305, 155–181 (1979);314, 177–195 (1980).Google Scholar
  707. 707.
    O. Kerner and Th. Thode, “Primary rings and related radical. I,” Arch. Math.,27, No. 4, 372–377 (1976).Google Scholar
  708. 708.
    O. Kerner and Th. Thode, “Primary rings and related radicals. II,” Commun. Algebra,4, No. 11, 1029–1044 (1976).Google Scholar
  709. 709.
    A. Kertesz, Rings, Modules and Radicals, Colloq. Math. Soc. Janos Bolyai, 6, North-Holland, Amsterdam-London (1973).Google Scholar
  710. 710.
    M. N. Khan, “A continuous ring in which every large right ideal is two sided,” Riv. Mat. Univ. Parma,2, 277–280 (1973).Google Scholar
  711. 711.
    M. Z. Khan, “A note on RSI-ring,” Tamkang J. Math.,8, No. 2, 153–164 (1977).Google Scholar
  712. 712.
    M. Z. Khan, “Modules over bounded hereditary noetherian prime rings,” Can. Math. Bull.,22, No. 1, 53–57 (1979).Google Scholar
  713. 713.
    S. M. Khaleelulla, “A closed graph theorem for ordered topological Abelian groups,” Tamkand J. Math.,7, No. 1, 31–35 (1976).Google Scholar
  714. 714.
    D. Kirby and H. A. Mehran, “Fractional powers of a submodule of an algebra,” Mathematika,18, 8–13 (1971).Google Scholar
  715. 715.
    M. Kirezci, “A remark on IBN-rings and free ideal rings,” METU J. Pure Appl. Sci.,5, No. 1, 15–18 (1972).Google Scholar
  716. 716.
    E. E. Kirkman and J. J. Kuzmanovich, “Order over hereditary rings,” J. Algebra,55, No. 1, 1–27 (1978).Google Scholar
  717. 717.
    E. W. Kiss, “A module-theoretic characterization of rings with unity,” Acta Math. Hungar.,31, Nos. 3/4, 345–348 (1978).Google Scholar
  718. 718.
    Y. Kitamura, “Centralizers of a module over a quasi-Frobenius extension,” Math. J. Okayama Univ.,17, No. 2, 103–123 (1975).Google Scholar
  719. 719.
    Y. Kitamura, “A note on quotient rings over a quasi-Frobenius extension,” Math. J. Okayama Univ.,18, No. 1, 57–67 (1975).Google Scholar
  720. 720.
    Y. Kitamura, “Note on the maximal quotient rings of a Galois subring,” Math. J. Okayama Univ.,19, No. 1, 55–60 (1976).Google Scholar
  721. 721.
    R. Knörr, “Ringepimorphismen und Morita-projektive Moduln über kommutativen Dedekind-Ringen,” Comment. Math. Helv.,50, No. 2, 267–275 (1975).Google Scholar
  722. 722.
    R. Knörr, “Morita-injektive Moduln über Kommutativen Dedekind-Ringen,” J. Reine Angew. Math.,281, 143–163 (1976).Google Scholar
  723. 723.
    R. Knörr, “Relative projective covers,” Var. Publs. Ser. Mat. Inst. Aarhus Univ., No. 29, 28–32 (1978).Google Scholar
  724. 724.
    M.-A. Knus, “Modules quadratiques sur un anneau de polynomes,” Monogr. Enseign. Math., No. 26, 179–185 (1978).Google Scholar
  725. 725.
    A. Koehler, “Pre-self-injective duo rings,” Proc. Am. Math. Soc.,60, No. 208, 31–34 (1976).Google Scholar
  726. 726.
    P. Koh, “Finite projective dimension under change of rings,” Rocky Mount. J. Math.,8, No. 4, 647–651 (1978).Google Scholar
  727. 727.
    G. Krause, “Krull dimension and Gabriel dimension of idealizers of semimaximal left ideals,” J. London Math. Soc.,12, No. 2, 137–140 (1976).Google Scholar
  728. 728.
    G. Krause, “Some recent developments in the theory of noetherian rings,” Lect. Notes Math.,641, 209–219 (1978).Google Scholar
  729. 729.
    G. Krause, T. H. Lenagan, and J. T. Stafford, “Ideal invariance and Artinian quotient rings,” J. Algebra,55, No. 1, 145–154 (1978).Google Scholar
  730. 730.
    G. Krause and M. L. Teply, “The transfer of the Krull dimension and the Gabriel dimension to subidealizers,” Can. J. Math.,29, No. 4, 874–888 (1977).Google Scholar
  731. 731.
    M. Krusemeyer, “Completingα 2,β, γ,” Queen's Pap. Pure Appl. Math., No. 42, 253–254 (1975).Google Scholar
  732. 732.
    M. Kulkarni, “A generalization of Pascal's theorem to commutative rings,” Arch. Math.,33, No. 5, 426–429 (1980).Google Scholar
  733. 733.
    H. Kupisch, “Quasi-Frobenius algebras of finite representation type,” Lect. Notes Math.,488, 184–200 (1975).Google Scholar
  734. 734.
    H. Kupisch, “Basialgebren symmetrischer Algebren und eine Vermutung von Gabriel,” J. Algebra,55, No. 1, 58–73 (1978).Google Scholar
  735. 735.
    Y. Kurata and H. Katayama, “On a generalization of QF-3 rings,” Osaka J. Math.,13, 407–418 (1976).Google Scholar
  736. 736.
    M. Kutami and K. Oshiro, “Direct sums of nonsingular indecomposable injective modules,” Math. J. Okayama Univ.,20, No. 2, 91–99 (1978).Google Scholar
  737. 737.
    Hoang Ky, “A divisible module over a principal ideal ring,” Acta Math. Vietnamica,2, No. 1, 141–151 (1977).Google Scholar
  738. 738.
    J. P. Labute, “Free Lie algebras as modules over their enveloping algebras,” Proc. Am. Math. Soc.,68, No. 2, 135–139 (1978).Google Scholar
  739. 739.
    E. L. Lady, “Completely decomposable flat modules over locally factorial domains,” Proc. Am. Math. Soc.,54, 27–31 (1976).Google Scholar
  740. 740.
    E. L. Lady, “Splitting fields for torsion-free modules over discrete valuation rings. I,” J. Algebra,49, No. 1, 261–275 (1977).Google Scholar
  741. 741.
    E. L. Lady, “On classifying torsion-free modules over discrete valuation rings,” Lect. Notes Math.,616, 168–172 (1977).Google Scholar
  742. 742.
    E. L. Lady, “Extension of scalars for torsion free modules over Dedekind domains,” in: Symp. Math. Ist. Naz. Alta Mat. Francesco Severi, Vol. 23, Roma (1979), pp. 287–305.Google Scholar
  743. 743.
    C. C. Lai, “Localization in non-noetherian rings,” Commun. Algebra,7, No. 13, 1351–1376 (1979).Google Scholar
  744. 744.
    T. Y. Lam, “Series summation of stably free modules,” Q. J. Math.,27, No. 105, 37–46 (1976).Google Scholar
  745. 745.
    T. Y. Lam, Serre's Conjecture, Lect. Notes Math., Vol. 635 (1978).Google Scholar
  746. 746.
    J. Lambek, “Localization at epimorphisms and quasiinjectives,” J. Algebra,38, No. 1, 163–181 (1976).Google Scholar
  747. 747.
    P. Landrock, “Some remarks on Loewy lengths of projective modules,” Prepr. Ser. Math. Inst. Aarhus Univ., No. 24, (1979/1980).Google Scholar
  748. 748.
    C. Lanski, “Regularity and quotients in rings with involution,” Pac. J. Math.,56, No. 2, 565–574 (1975).Google Scholar
  749. 749.
    C. Lanski, “Gabriel dimension and rings with involution,” Houston J. Math.,4, No. 3, 397–415 (1978).Google Scholar
  750. 750.
    D. Latsis, “Localisation dans les anneaux duos,” C. R. Acad. Sci.,282, No. 24, A1403-A1406 (1976).Google Scholar
  751. 751.
    D. Latsis, “Modules tertiaires,” Groupe d'Étude d'Algèbre, Paris (1978), Exp. No. 3.Google Scholar
  752. 752.
    J. Lawrence, “A countable self-injective ring is quasi-Frobenius,” Proc. Am. Math. Soc.,65, No. 2, 217–220 (1977).Google Scholar
  753. 753.
    J. Lawrence and K. Louden, “Rationally complete group rings,” J. Algebra,50, No. 1, 113–121 (1978).Google Scholar
  754. 754.
    Kwang Young Lee, “Remarks on the quasiprojectiveness of rings,” Ulsan Inst. Techn. Rep.,6, No. 1, 25–28 (1975).Google Scholar
  755. 755.
    B. Lemonnier, “Dimension de Krull et codeviation des anneaux semihéréditaires,” C. R. Acad. Sci.,284, No. 12, 663–666 (1977).Google Scholar
  756. 756.
    B. Lemonnier, “Dimension de Krull et codeviation. Application au théorème d'Éakin,” Commun. Algebra,6, No. 16, 1647–1665 (1978).Google Scholar
  757. 757.
    T. H. Lenagan, “Artinian ideals in Noetherian rings,” Proc. Am. Math. Soc.,51, No. 2, 499–500 (1975).Google Scholar
  758. 758.
    T. H. Lenagan, “Krull dimension and invertible ideals in Noetherian rings,” Proc. Edinburgh Math. Soc.,20, No. 2, 81–86 (1976).Google Scholar
  759. 759.
    T. H. Lenagan, “Artinian quotient rings of Macaulay rings,” Lect. Notes Math.,545, 140–150 (1976).Google Scholar
  760. 760.
    T. H. Lenagan, “Reduced rank in rings with Krull dimension,” in: Ring Theory. Proc. Antwerp Conf., 1978, New York-Basel (1979), pp. 123–131.Google Scholar
  761. 761.
    T. H. Lenagan, “Modules with Krull dimension,” Bull. London Math. Soc.,12, No. 1, 39–40 (1980).Google Scholar
  762. 762.
    H. Lenzing, “Direct sums of projective modules as direct summands of their direct product,” Commun. Algebra,4, No. 7, 681–691 (1976).Google Scholar
  763. 763.
    Y. Lequain and A. Simis, “Projective modules over R[X,...,Xn], R a Prüfer domain,” Notas Commun. Mat., No. 84 (1978).Google Scholar
  764. 764.
    L. Lesieur, “Ideal premierp d'un anneau Noethérien a gauche: condition de Ore pourC(P)”. Séminaire d'Algèbre non commutative, 1973/1974, Paris-Orsay (1974).Google Scholar
  765. 765.
    Zb. Leszczynski and D. Simson, “On triangular matrix rings of finite representation type,” J. London Math. Soc.,20, No. 3, 396–402 (1979).Google Scholar
  766. 766.
    R. A. Levaro, “Projective quasicoherent sheaves of modules,” Pac. J. Math.,57, No. 2, 457–461 (1975).Google Scholar
  767. 767.
    L. S. Levy, “Matrix equivalence and finite representation type,” Commun. Algebra,3, No. 8, 739–748 (1975).Google Scholar
  768. 768.
    L. S. Levy, “Decomposing a projective module and several submodules,” Adv. Math.,20, No. 1, 30–42 (1976).Google Scholar
  769. 769.
    L. S. Levy, “Modules over the cyclic group of prime order,” Lect. Notes Math.,734, 207–222 (1979).Google Scholar
  770. 770.
    D. Licoiu, “Sur la dimension homologique des morphismes d'anneaux,” C. R. Acad. Sci.,A281, Nos. 2–3, 77–79 (1975).Google Scholar
  771. 771.
    D. Lecoiu, “Sur les anneaux semiartiniens réguliers,” Rev. Roum. Math. Pures Appl.,23, No. 3, 411–412 (1978).Google Scholar
  772. 772.
    D. Licoiu, “Sur la dimension homologique des modules,” C. R. Acad. Sci.,A287, No. 4, 193 (1978).Google Scholar
  773. 773.
    W. Liebert, “Ulm valuations and covaluations on torsion-complète p-groups,” Lect. Notes Math.,616, 337–353 (1977).Google Scholar
  774. 774.
    I-Peng B. Lin, “Products of torsion theories and applications to coalgebras,” Osaka J. Math.,12, No. 2, 433–439 (1975).Google Scholar
  775. 775.
    I-Peng B. Lin, “Semiperfect coalgebras,” J. Algebra,49, No. 2, 357–373 (1977).Google Scholar
  776. 776.
    T. Y. Lin and H. R. Margolis, “Homological aspects of modules over the Steenrod algebra,” J. Pure Appl. Algebra,9, No. 2, 121–129 (1977).Google Scholar
  777. 777.
    H. Lindel, “Wenn B ein Hauptidealring ist, so sind alle projektiven B[X, Y]-Moduln frei,” Math. Ann.,222, No. 3, 283–289 (1976).Google Scholar
  778. 778.
    H. Lindel, “Projektive Moduln über Polynomringen A[Ti,...,Tm] mit einem regulären Grundring A,” Manuscr. Math.,23, No. 2, 143–154 (1978).Google Scholar
  779. 779.
    H. Lindel and W. Lutkebohmert, “Projektive Moduln über polynomialen Erweiterungen von Potenzreihen algebren,” Arch. Math.,28, No. 1, 51–54 (1977).Google Scholar
  780. 780.
    C. Löfwall, “The global homological dimension of trivial extensions of rings,” J. Algebra,39, No. 1, 287–307 (1976).Google Scholar
  781. 781.
    F., Loonstra, “Notes on subdirect products of modules,” An. Sti. Univ. Iasi, Sec. la,21, 1–8 (1975).Google Scholar
  782. 782.
    F. Loonstra, “Note on extensions of modules,” Acta Math. Acad. Sci. Hung.,26, Nos. 3–4, 349–354 (1975).Google Scholar
  783. 783.
    F. Loonstra, “Subproducts and subdirect products,” Publ. Math.,24, Nos. 1–2, 129–137 (1977).Google Scholar
  784. 784.
    F. Loonstra, “Essential submodules and essential subdirect products,” in: Symp. Math. Ist. Naz. Alta Mat. Francesco Severi, Vol. 23, Roma (1979), pp. 85–105.Google Scholar
  785. 785.
    K. Louden, “Maximal quotient rings of ring extensions,” Pac. J. Math.,62, No. 2, 489–496 (1976).Google Scholar
  786. 786.
    K. Louden, “Torsion theories and ring extensions,” Commun. Algebra,4, No. 6, 503–532 (1976).Google Scholar
  787. 787.
    J. K. Luedeman and J. A. Bate, “The ring of quotients of R(S),” Semigroup Forum,18, No. 3, 271–278 (1979).Google Scholar
  788. 788.
    M.-P. Mallavin-Brameret, “Regularité locale d'algèbres universelles,” C. R. Acad. Sci.,283, No. 13, A923-A925 (1976).Google Scholar
  789. 789.
    J. Manocha, “On rings with essential socle,” Commun. Algebra,4, No. 11, 1077–1086 (1976).Google Scholar
  790. 790.
    Z. Maoulaoui, “Sur les modules réguliers,” Arch. Math.,30, No. 5, 469–472 (1978).Google Scholar
  791. 791.
    P. Maroscia, “Modules projectifs sur certains anneaux de polynomes,” C. R. Acad. Sci.,285, No. 4, A183-A185 (1977).Google Scholar
  792. 792.
    Ph. Martin, “Théorème de décomposition en produits pour des anneaux autoinjectifs à droite admettant des sommes,” C. R. Acad. Sci.,282, No. 17, A951-A953 (1976).Google Scholar
  793. 793.
    Ph. Martin, “Autoinjectivité des images homomorphiques d'un anneau de polynomes,” C. R. Acad. Sci.285, No. 7, A489-A492 (1977).Google Scholar
  794. 794.
    J. Martinez, “Is the lattice of torsion classes algebraic?” Proc. Am. Math. Soc.,63, No. 1, 9–14 (1977).Google Scholar
  795. 795.
    V. R. Martinez, “Almost projective modules over artin algebras and almost split sequences,” in: Ring Theory. Proc. Antwerp Conf., 1978, New York-Basel (1979), pp. 495–511.Google Scholar
  796. 796.
    H. Marubayashi, “A note on locally uniform rings and modules,” Proc. Jpn. Acad.,47, No. 1, 11–14 (1971).Google Scholar
  797. 797.
    H. Marubayashi, “Remarks on ideals of bounded Krull prime rings,” Proc. Jpn. Acad.,53, No. 1, 27–29 (1977).Google Scholar
  798. 798.
    H. Marubayashi, “Polynomial rings over Krull orders in simple Artinian rings,” Hokkaido Math. J.,9, No. 1, 63–78 (1980).Google Scholar
  799. 799.
    K. Masalke, “On equivalent orders in semisimple rings,” Bull. Tokyo G akugei Univ. (4),26, 39–44 (1974).Google Scholar
  800. 800.
    K. Masaike, “On embedding torsion free modules into free modules,” Proc. Jpn. Acad.,53, No. 1, 23–26 (1977).Google Scholar
  801. 801.
    K. Masaike, “Endomorphisms of modules over maximal orders,” Math. J. Okayama Univ.,21, No. 1, 33–40 (1979).Google Scholar
  802. 802.
    G. Mason, “Injective and projective near-ring modules,” Compos. Math.,33, No. 1, 43–54 (1976).Google Scholar
  803. 803.
    E. Matlis, “Generalizations of divisible abelian groups to the theory of modules,” in: Symp. Math. Ist. Naz. Alta Mat. Francesco Severi, Vol. 23, Roma (1979), pp. 241–250.Google Scholar
  804. 804.
    G. Maury, “Anneaux de fractions classiques dans les R-ordres maximaux,” Commun. Algebra,3, No. 12, 1083–1091 (1975).Google Scholar
  805. 805.
    G. Maury, “Compléments à mon article ‘Anneaux de fractions classiques dans les ordres maximaux’,” Commun. Algebra,3, No. 12, 1093–1096 (1975).Google Scholar
  806. 806.
    G. Maury, “Exemples et compléments en théorie des ordres maximaux au sens de K. Asano,” C. R. Acad. Sci.,284, No. 15, A839-A842 (1977).Google Scholar
  807. 807.
    G. Maury, “Un théorème de l'idéal principal dans les R-ordres,” Commun. Algebra,7, No. 7, 677–687 (1979).Google Scholar
  808. 808.
    M. Mazan, “Dual topologique d'un module quelconque,” Boll. Unione Mat. Ital.,A13, No. 3, 586–591 (1976).Google Scholar
  809. 809.
    J. C. McConnell, “On the global dimension of some rings,” Math. Z.,153, No. 3, 253–254 (1977).Google Scholar
  810. 810.
    J. C. McConnell, “The global dimension of rings of differential operators,” Lect. Notes Math.,641, 189–197 (1978).Google Scholar
  811. 811.
    B. R. McDonald, Geometric Algebra Over Local Rings, Monographs and Textbooks in Pure and Applied Math., No. 36, Marcel Dekker, New York-Basel (1976).Google Scholar
  812. 812.
    B. R. McDonald, “Endomorphisms of infinitely generated projective modules,” J. Algebra,45, No. 1, 69–82 (1977).Google Scholar
  813. 813.
    K. McDowell, “A codimension theorem for pseudo-Noetherian rings,” Trans. Am. Math. Soc.,214, 179–185 (1975).Google Scholar
  814. 814.
    K. McDowell, “Pseudo-Noetherian rings,” Can. Math. Bull.,19, No. 1, 77–84 (1976).Google Scholar
  815. 815.
    W. S. McVoy and L. A. Rubel, “Coherence of some rings of functions,” J. Funct. Anal.,21, No. 1, 76–87 (1976).Google Scholar
  816. 816.
    F. Mehdi, “On multiplications modules,” Math. Stud.,42, Nos. 1–4, 149–153 (1974(1975)).Google Scholar
  817. 817.
    F. Mehdi, “On multiplications and weak multiplication modules,” Riv. Mat. Univ. Parma,2, No. 4, 107–112 (1976).Google Scholar
  818. 818.
    J. D. P. Meldrum, “Injective near-ring modules over Zn,” Proc. Am. Math. Soc.,68, No. 1, 16–18 (1978).Google Scholar
  819. 819.
    C. Menini, “Topologie di caratteri per moduli su anelli Noetheriani,” Ann. Univ. Ferrara,23, Sez. 7, 45–48 (1977).Google Scholar
  820. 820.
    C. Menini, “On E-compact modules over SISI rings,” Ann. Univ. Ferrara,23, Sez. 7, 195–207 (1977).Google Scholar
  821. 821.
    K. Meyberg and B. Zimmerman-Huisgen, “Rings with descending chain condition on certain principal ideals,” Proc. Kon. Ned. Akad. Wetensch.,A80, 225–229 (1977).Google Scholar
  822. 822.
    G. O. Michler, “Petits modules projectifs des groupes finis,” C. R. Acad. Sci.,282, No. 8, A397-A398 (1976).Google Scholar
  823. 823.
    G. O. Michler, “Small projective modules of finite groups,” Lect. Notes Math.,586, 34–42 (1977).Google Scholar
  824. 824.
    C. B. Miller and M. Rajagopalan, “Topologies in locally compact groups. III,” Proc. London Math. Soc.,31, No. 1, 55–78 (1975).Google Scholar
  825. 825.
    D. D. Miller, “Semihereditary prime algebras,” Commun. Algebra,7, No. 9, 885–940 (1979).Google Scholar
  826. 826.
    R. W. Miller, “Finitely generated projective modules and TTF classes,” Pac. J. Math.,64, No. 2, 505–515 (1976).Google Scholar
  827. 827.
    R. W. Miller and M. L. Teply, “On flatness relative to a torsion theory,” Commun. Algebra,6, No. 10, 1037–1072 (1978).Google Scholar
  828. 828.
    R. W. Miller and M. L. Teply, “The descending chain condition relative to a torsion theory,” Pac. J. Math.,83, No. 1, 269–272 (1979).Google Scholar
  829. 829.
    R. W. Miller and D. Turnidge, “Factors of cofinitely generated injective modules,” Commun. Algebra,4, No. 3, 233–243 (1976).Google Scholar
  830. 830.
    I. Mogami and H. Tominaga, “On coprimary decomposition theory for modules,” Math. J. Okayama Univ.,17, No. 2, 125–130 (1975).Google Scholar
  831. 831.
    I. Mogami and H. Tominaga, “On coprimary decomposition theory for modules,” Math. J. Okayama Univ.,17, No. 2, 125–130 (1975).Google Scholar
  832. 832.
    S. Mohamed, “On PCI rings,” J. Univ. Kuwait Sci.,2, 21–23 (1975).Google Scholar
  833. 833.
    S. Mohamed and B. J. Muller, “Decomposition of dual-continuous modules,” Lect. Notes Math.,700, 87–94 (1979).Google Scholar
  834. 834.
    S. Mohamed and S. Singh, “Weak q-rings,” Can. J. Math.,29, No. 4, 687–695 (1977).Google Scholar
  835. 835.
    S. Mohamed and S. Singh, “Generalizations of decomposition theorems known over perfect rings,” J. Austral. Math. Soc.,24, No. 4, 496–510 (1977).Google Scholar
  836. 836.
    S. Mohamed and S. Singh, “Weak q-rings with zero singular ideal,” Proc. Am. Math. Soc.,76, No. 1, 25–30 (1979).Google Scholar
  837. 837.
    A. Mohammad, “Rings whose proper homomorphic images are left q-rings,” Tamkang J. Math.,9, No. 2, 265–268 (1978).Google Scholar
  838. 838.
    W. Moran, “The global dimension of C(X),” J. London Math. Soc.,17, No. 2, 321–329 (1978).Google Scholar
  839. 839.
    K. Morita, “Localization in categories of modules. IV,” Sci. Repts. Tokyo Kyoiku Daigaku,A13, Nos. 366–382, 153–164 (1977).Google Scholar
  840. 840.
    B. J. Müller, “Localization in fully bounded Noetherian rings,” Pac. J. Math.,67, No. 1, 233–246 (1976).Google Scholar
  841. 841.
    B. J. Müller, “Localization on noncommutative Noetherian rings,” Can. J. Math.,28, No. 3, 600–610 (1976).Google Scholar
  842. 842.
    B. J. Müller, “An example in noncommutative localization,” An. Inst. Mat. Univ. Nac. Autonoma Mexico,17, 75–86 (1977).Google Scholar
  843. 843.
    B. J. Müller, “Noncommutative localization and invariant theory,” Commun. Algebra,6, No. 8, 839–862 (1978).Google Scholar
  844. 844.
    B. J. Müller, “Two-sided quotient rings for Noetherian PI-rings,” R. Soc. Can. Math. Repts.,1, No. 1, 53–56 (1979).Google Scholar
  845. 845.
    B. J. Müller, “Ideal invariance and localization,” Commun. Algebra,7, No. 4, 415–441 (1979).Google Scholar
  846. 846.
    B. J. Müller, “Two-sided localization in Noetherian PI-rings,” in: Ring Theory. Proc. Antwerp Conf., 1978, New York-Basel (1979), pp. 169–190.Google Scholar
  847. 847.
    B. J. Müller, “Two-sided localization in Noetherian PI-rings,” J. Algebra,63, No. 2, 359–373 (1980).Google Scholar
  848. 848.
    W. Müller, “On Artin rings of finite representation type,” Lect. Notes Math.,488, 236–243 (1975).Google Scholar
  849. 849.
    W. Müller, “A generalization of Swan's theorem,” Math. Z.,151, No. 1, 57–70 (1976).Google Scholar
  850. 850.
    W. Müller, “A categorical characterisation of compactness,” J. London Math. Soc.,17, No. 2, 356–362 (1978).Google Scholar
  851. 851.
    C. J. Mulvey, “Compact ringed spaces,” J. Algebra,52, No. 2, 411–436 (1978).Google Scholar
  852. 852.
    C. J. Mulvey, “Representations of rings and modules,” Lect. Notes Math.,753, 542–585 (1979).Google Scholar
  853. 853.
    D. C. Murdoch and F. M. van Oystaeyen, “A note on reductions of modules and kernel functors,” Bull. Soc. Math. Belg.,26, No. 4, 351–361 (1974).Google Scholar
  854. 854.
    M. P. Murthy, “Generators for certain ideals in regular rings of dimension three,” Comment. Math. Helv.,47, 179–184 (1972).Google Scholar
  855. 855.
    I. M. Musson, “Injective modules for group algebras of locally finite groups,” Math. Proc. Cambridge Phil. Soc.,84 No. 2, 247–262 (1978).Google Scholar
  856. 856.
    C. Nastasescu, “Decomposition tertiaire et primaire dans un anneau,” Bull. Math. Soc. Sci. Math. RSR,18, Nos. 3–4, 339–354 (1974(1976)).Google Scholar
  857. 857.
    C. Nastasescu, “Anneaux et modules gradués,” Rev. Roum. Math. Pures Appl.,21, No. 7, 911–931 (1976).Google Scholar
  858. 858.
    C. Nastasescu, “Modules simples sur les anneaux gradués,” C. R. Acad. Sci.,283, No. 7, 425–428 (1976).Google Scholar
  859. 859.
    C. Nastasescu, Inele. Module, Categorii, Editura Academiei Republicii Socialiste Romani, Bucharest (1976).Google Scholar
  860. 860.
    C. Nastasescu, “Quelques observations sur la dimension de Krull,” Bull. Math. Soc. Sci. RSR,20, Nos. 3–4, 291–293 (1976(1977)).Google Scholar
  861. 861.
    C. Nastasescu, “Conditions de finitude pour les modules,” Rev. Roum. Math. Pures Appl.,24, No. 5, 745–758 (1979).Google Scholar
  862. 862.
    C. Nastasescu, “Modules Σ-injectifs,” in: Ring Theory., Proc. Antwerp Conf., 1978, New York-Basel (1979), pp. 729–740.Google Scholar
  863. 863.
    C. Nastasescu, “Décompositions primaires dans les anneaux Noethériens à gauche gradués,” in: Symp. Math. Ist. Naz. Alta Mat. Francesco Severi, Vol. 23, Roma (1979), pp. 251–258.Google Scholar
  864. 864.
    C. Nastasescu, “Conditions de finitude pour les modules. II,” Rev. Roum. Math. Pures Appl.,25, No. 4, 615–630 (1980).Google Scholar
  865. 865.
    C. Nastasescu and F. van Oystaeyen, “Graded and filtered rings and modules,” Lect. Notes Math.,758, No. 10 (1979).Google Scholar
  866. 866.
    E. Nauwelaerts, “Symmetric localization of Asano orders,” in: Ring Theory. Proc. Antwerp Conf., 1977, New York-Basel (1978), pp. 65–80.Google Scholar
  867. 867.
    E. Nauwelaerts and F. van Oystaeyen, “Localization of primes in algebras over fields,” Proc. Kon. Ned. Akad. Wetensch.,A80, No. 3, 233–242 (1977); Indag. Math.,39, No. 3, 233–242 (1977).Google Scholar
  868. 868.
    E. Nauwelaerts and F. van Oystaeyen, “Birational hereditary Noetherian prime rings,” Commun. Algebra,8, No. 4, 309–338 (1980).Google Scholar
  869. 869.
    J. Neggers, “Cyclic rings,” Rev. Union. Mat. Argent.,28, No. 2, 108–114 (1977).Google Scholar
  870. 870.
    P. Němec, “General theory of preradicals,” Stud. Alg. Anwend.,1, 31–35 (1976).Google Scholar
  871. 871.
    P. Němec, “Remarque sur les sommes directes des modules de type denombrable,” Publ. Dep. Math.,15, No. 4, 37–48 (1978).Google Scholar
  872. 872.
    W. Neumayer, “Schwachperfekte Ringe,” Fachbereich Mathematik der Technischen Universität München (1978).Google Scholar
  873. 873.
    T. Neuvonen, “On the structure of produced and induced indecomposable Lie modules,” Ann. Acad. Sci. Fenn., Ser. A1, No. 2, 199–206 (1975).Google Scholar
  874. 874.
    M. Newell, “Ideals with hypercentral action on modules,” J. Algebra,42, No. 2, 600–603 (1976).Google Scholar
  875. 875.
    W. K. Nicholson, “I-rings,” Trans. Am. Math. Soc.,207, 361–373 (1975).Google Scholar
  876. 876.
    W. K. Nicholson, “On semiperfect modules,” Can. Math. Bull.,18, No. 1, 77–80 (1975).Google Scholar
  877. 877.
    W. K. Nicholson, “Semiregular modules and rings,” Can. J. Math.,28, No. 5, 1105–1120 (1976).Google Scholar
  878. 878.
    W. K. Nicholson, “Lifting idempotents and exchange rings,” Trans. Am. Math. Soc.,229, 269–278 (1977).Google Scholar
  879. 879.
    W. K. Nicholson and J. F. Watters, “The strongly prime radicals,” Proc. Am. Math. Soc.,76, No. 2, 236–240 (1979).Google Scholar
  880. 880.
    A.-M. Nicolas, “Modules factorables de type fini et de rang n≥2; localizć d'un module factorable,” C. R. Acad. Sci., A-B,280, No. 25, A1717-A1718 (1975).Google Scholar
  881. 881.
    A.-M. Nicolas, “Sur les modules tels que toute suite croissante de sous modules engendrés par n générateurs soit stationnaire,” J. Algebra,60, No. 1, 249–260 (1979).Google Scholar
  882. 882.
    A.-M. Nicolas, “Généralisation d'un critère de Pontryagin concernant les groupes sans torsion dénombrables á des modules sans torsion sur des anneaux de Dedekind. Conditions de rang, de type, de chaines ascendantes,” Lect. Notes Math.,740, 385–396 (1979).Google Scholar
  883. 883.
    M. Nishi and M. Shinagawa, “Codivisorial and divisorial modules over completely integrally closed domains. I,” Hiroshima Math. J.,5, No. 2, 269–292 (1975); II. Ibid.,5, No. 3, 461–471 (1975).Google Scholar
  884. 884.
    Kenji Nishida, “U-rational extension of a ring,” Hokkaido Math. J.,5, No. 2, 227–231 (1976).Google Scholar
  885. 885.
    Kenji Nishida, “Remarks on relatively flat modules,” Hokkaido Math. J.,6, No. 1, 130–135 (1977).Google Scholar
  886. 886.
    Kenji Nishida, “Divisible modules, codivisible modules, and quasidivisible modules,” Commun. Algebra,5, No. 6, 591–610 (1977).Google Scholar
  887. 887.
    Kenji Nishida, “Construction of coreflectors,” J. Algebra,54, No. 2, 316–328 (1978).Google Scholar
  888. 888.
    C. Nita, “S-anneaux Noethériens,” Rend. Sem. Mat. Univ. Padova,53, 1–11 (1975).Google Scholar
  889. 889.
    C. Nita, “Quelques observations sur les théories de torsion héréditaires,” Bull. Math. Soc. Sci. Math. RSR,24, No. 1, 73–76 (1980).Google Scholar
  890. 890.
    A. Nobile, “A note on flat algebras,” Proc. Am. Math. Soc.,64, No. 2, 206–208 (1977).Google Scholar
  891. 891.
    A. Nowicki, “The primary decomposition of differential modules,” Rocz. Pol. Tow. Mat., Ser. 1,21, No. 2, 341–346 (1979).Google Scholar
  892. 892.
    R. J. Nunke, “Whitehead's problem,” Lect. Notes Math.,616, 240–250 (1977).Google Scholar
  893. 893.
    J. Ohm, “An axiomatic approach to homological dimension,” Math. Scand.,37, No. 2, 197–222 (1975).Google Scholar
  894. 894.
    M. Ohori, “Characterizations of division rings,” J. Fac. Sci. Shinshu Univ.,12, No. 1, 41–42 (1977).Google Scholar
  895. 895.
    K. Ohtake, “Colocalization and localization,” J. Pure Appl. Algebra,11, No. 13, 217–241 (1977).Google Scholar
  896. 896.
    J. Okninski, “Spectrally finite and semilocal group rings,” Commun. Algebra,8, No. 6, 553–541 (1980).Google Scholar
  897. 897.
    J.-P. Olivier, “L'eanneau absolument plat universel, les épimorphismes et les parties constructibles,” Bol. Soc. Mat. Mex.,23, No. 2, 68–74 (1978).Google Scholar
  898. 898.
    K. C. O'Meara, “Quotient rings of symmetric and universal group algebras,” Commun. Algebra,8, No. 3, 235–260 (1980).Google Scholar
  899. 899.
    T. Onodera, “On balanced projectives and injectives over linearly compact rings,” Hokkaido Math. J.,5, No. 2, 249–256 (1976).Google Scholar
  900. 900.
    T. Onodera, “Codominant dimensions and Morita equivalences,” Hokkaido Math. J.,6, No. 2, 169–182 (1977).Google Scholar
  901. 901.
    T. Onodera, “A note on linearly compact modules,” Hokkaido Math. J.,8, No. 1, 121–125 (1979).Google Scholar
  902. 902.
    A. Orsatti, “Dualita per alcune classi di moduli E-compatti,” Ann. Mat. Pura Appl.,113, 211–235 (1977).Google Scholar
  903. 903.
    J. M. Osborn, “Modules over nonassociative rings,” Commun. Algebra,6, No. 13, 1297–1358 (1978).Google Scholar
  904. 904.
    K. Oshiro, “A note on direct sums of cyclic modules over commutative regular rings,” Osaka J. Math.,12, No. 3, 715–718 (1975).Google Scholar
  905. 905.
    K. Oshiro, “On torsion free modules over regular rings. III,” Math. J. Okayama Univ.,18, No. 1, 43–56 (1975).Google Scholar
  906. 906.
    K. Oshiro, “Basic elements over von Neumann regular elements,” Proc. Jpn. Acad.,52, No. 7, 351–354 (1976).Google Scholar
  907. 907.
    K. Oshiro, “On commutative rings which have completely reducible torsion theories,” Proc. Jpn. Acad., Ser. A, Math. Sci.,53, No. 2, 46–49 (1977).Google Scholar
  908. 908.
    K. Oshiro, “On cyclic splitting commutative rings,” Osaka J. Math.,15, No. 2, 371–380 (1978).Google Scholar
  909. 909.
    K. Oshiro, “Thin patches and semiprime FGC-rings,” Osaka J. Math.,16, No. 1, 57–63 (1979).Google Scholar
  910. 910.
    B. Osofsky, “Projective dimension of “nice” directed union,” J. Pure Appl. Algebra,13, 179–219 (1978).Google Scholar
  911. 911.
    B. Osofsky, “Remarks on projective dimension of ℵ-unions,” Lect. Notes Math.,734, 223–235 (1979).Google Scholar
  912. 912.
    J. Osterburg, “Completely outer Galois theory of perfect rings,” Pac. J. Math.,56, No. 1, 215–220 (1975).Google Scholar
  913. 913.
    J. Osterburg, “A note on perfect modules over crossed products,” Rev. Colomb. Mat.,10, No. 2, 69–73 (1976).Google Scholar
  914. 914.
    J. Osterburg, “Some remarks on the crossed product,” Yokohama Math. J.,24, Nos. 1–2, 57–61 (1976).Google Scholar
  915. 915.
    A. Oswald, “A note on injective modules over a.d.g. near-rings,” Can. Math. Bull.,20, No. 2, 267–269 (1977).Google Scholar
  916. 916.
    A. Oswald, “On near-rings of quotients,” Proc. Edinburgh Math. Soc.,22, No. 2, 77–86 (1979).Google Scholar
  917. 917.
    F. van Oystaeyen, “Note on the torsion theory at a prime ideal of a left Noetherian ring,” J. Pure Appl. Algebra,6, No. 3, 297–304 (1975).Google Scholar
  918. 918.
    F. van Oystaeyen, “Extension of ideals under symmetric localization,” J. Pure Appl. Algebra,6, No. 3, 275–283 (1975).Google Scholar
  919. 919.
    F. van Oystaeyen, “Localizations of fully left bounded rings,” Commun. Algebra,4, No. 3, 271–284 (1976).Google Scholar
  920. 920.
    F. van Oystaeyen, “A note on left balanced rings,” Proc. Kon. Ned. Akad. Wetensch.,A79, No. 3, 213–216 (1976); Indag. Math.,38, No. 3, 213–216 (1976).Google Scholar
  921. 921.
    F. van Oystaeyen, “On the relation between localization of groups and group rings,” Commun. Algebra,4, No. 2, 179–192 (1976).Google Scholar
  922. 922.
    F. van Oystaeyen, “Compatibility of kernel functors and localization functors,” Bull. Soc. Math. Belg.,28, No. 2, 131–137 (1976).Google Scholar
  923. 923.
    F. van Oystaeyen, “On the AR-property,” Bull. Soc. Math. Belg.,28, No. 1, 11–16 (1976).Google Scholar
  924. 924.
    F. van Oystaeyen, “Pointwise localization in presheaf categories,” Proc. Kon. Ned. Akad. Wetensch.,A80, No. 2, 114–121 (1977); Indag. Math.,39, No. 2, 114–121 (1977).Google Scholar
  925. 925.
    F. van Oystaeyen, “Stalks of sheaves over the spectra of certain noncommutative rings,” Commun. Algebra,5, No. 8, 899–901 (1977).Google Scholar
  926. 926.
    F. van Oystaeyen, “Zariski central rings,” Commun. Algebra,6, No. 8, 799–821 (1978).Google Scholar
  927. 927.
    F. van Oystaeyen, “Ring theory ∩ torsion theory-useful localization,” Nieuw Arch. Wisk.,26, No. 3, 413–427 (1978).Google Scholar
  928. 928.
    F. van Oystaeyen, “On graded rings and modules of quotients,” Commun. Algebra,6, No. 18, 1923–1959 (1978).Google Scholar
  929. 929.
    F. van Oystaeyen, “Graded and nongraded birational extensions,” in: Ring Theory. Proc. Antwerp Conf., 1977, New York-Basel (1978), pp. 155–179.Google Scholar
  930. 930.
    F. van Oystaeyen, “Birational extensions of rings,” in: Ring Theory. Proc. Antwerp Conf., 1978, New York-Basel (1979), pp. 287–328.Google Scholar
  931. 931.
    F. van Oystaeyen, “Graded prime ideals and the left Ore condition,” Commun. Algebra,8, No. 9, 861–868 (1980).Google Scholar
  932. 932.
    F. van Oystaeyen and J. van Geel, “Local-global results for regular rings,” Commun. Algebra,4, No. 9, 811–821 (1976).Google Scholar
  933. 933.
    F. van Oystaeyen and A. Verschoren, “Localization of presheaves of modules,” Proc. Kon. Ned. Akad. Wetensch.,A79, No. 4 (1976); Indag. Math.,38, No. 4, 335–348 (1976).Google Scholar
  934. 934.
    F. van Oystaeyen and A. Verschoren, “Relative localization; bimodules and semiprime PI rings,” Commun. Algebra,7, No. 9, 955–988 (1979).Google Scholar
  935. 935.
    F. van Oystaeyen and A. Verschoren, Reflectors and Localization. Application to Sheaf Theory, Lect; Notes Pure Appl. Math., Vol. 41, Marcel Dekker, New York-Basel (1979).Google Scholar
  936. 936.
    A. Page, “Sur les anneaux héréditaires ou semihéréditaires,” Commun. Algebra,6, No. 11, 1169–1186 (1978).Google Scholar
  937. 937.
    A. Page, “Actions des groupes,” Lect. Notes Math.,740, 9–24 (1979).Google Scholar
  938. 938.
    S. S. Page, “Continuous rings and rings of quotients,” Can. Math. Bull.,21, No. 3, 319–324 (1978).Google Scholar
  939. 939.
    S. S. Page, “Regular FPF rings,” Pac. J. Math.,79, No. 1, 169–176 (1978).Google Scholar
  940. 940.
    S. S. Page, “Images of injectives and universally cotorsionless modules,” Commun. Algebra,7, No. 2, 193–201 (1979).Google Scholar
  941. 941.
    I. Palmer, “The global homological dimension of semitrivial extensions of rings,” Math. Scand.,37, No. 2, 223–256 (1975).Google Scholar
  942. 942.
    I. J. Papick, “A remark on coherent overrings,” Can. Math. Bull.,21, No. 3, 373–375 (1978).Google Scholar
  943. 943.
    I. J. Papick, “Coherent overrings,” Can. Math. Bull.,22, No. 3, 331–337 (1979).Google Scholar
  944. 944.
    Z. Papp, “On stable Noetherian rings,” Trans. Am. Math. Soc.,213, 107–114 (1975).Google Scholar
  945. 945.
    Z. Papp, “Semistability and topologies on R-sp,” Commun. Algebra,4, No. 9, 793–809 (1976).Google Scholar
  946. 946.
    Z. Papp, “A topological characterization of stable rings,” Arch. Math.,29, No. 3, 235–240 (1977).Google Scholar
  947. 947.
    Z. Papp, “On the spectra of left stable rings,” in: Ring Theory. Proc. Antwerp Conf., 1978, New York-Basel (1979), pp. 741–756.Google Scholar
  948. 948.
    Z. Papp, “Spectrum topologies and sheaves for left Noetherian rings,” Lect. Notes Math.,700, 204–214 (1979).Google Scholar
  949. 949.
    S. Parimala, “Projective modules and Hermitian matrices,” J. Pure Appl. Algebra,7, No. 1, 5–14 (1976); Correction: ibid.,9, No. 2, 239 (1976/77).Google Scholar
  950. 950.
    S. Parimala and R. Sridharan, “Projective modules over quaternion algebras,” J. Pure Appl. Algebra,9, No. 2, 181–193 (1977).Google Scholar
  951. 951.
    J. L. Pascaud and J. Valette, “Group actions on Q-F-rings,” Proc. Am. Math. Soc.,76, No. 1, 43–44 (1979).Google Scholar
  952. 952.
    G. Paxia, “Ascent properties for absolutely flat homomorphisms,” Commun. Algebra,6, No. 4, 393–407 (1978).Google Scholar
  953. 953.
    P. M. Perdew, “Collapsible modules over pseudorings,” Commun. Algebra,6, No. 6, 611–616 (1978).Google Scholar
  954. 954.
    R. S. Pierce, “The global dimension of commutative regular rings,” Houston J. Math.,2, No. 1, 97–110 (1976).Google Scholar
  955. 955.
    P. Pillay, “On semihereditary noncommutative polynomial rings,” Proc. Am. Math. Soc.,78, No. 4, 473–474 (1980).Google Scholar
  956. 956.
    M. I. Platzeck, “Representation theory of algebras stably equivalent to an hereditary artin algebra,” Trans. Am. Math. Soc.,238, 89–128 (1978).Google Scholar
  957. 957.
    M. I. Platzeck, “On algebras stably equivalent to an hereditary Artin algebra,” Can. J. Math.,30, No. 4, 817–829 (1978).Google Scholar
  958. 958.
    M. I. Platzeck and M. Auslander, “Representation theory of hereditary artin algebras,” in: Represent. Theory Algebras. Proc. Philadelphia Conf., New York-Basel (1978), pp. 389–424.Google Scholar
  959. 959.
    G. G. Pleasant, “A note on the torsion concept of Levy and Goldie,” J. Trennessel Acad. Sci.,51, No. 1, 39–40 (1976).Google Scholar
  960. 960.
    Y. Plusquellec, “Dual ordonné d'un module,” R. Soc. Can. Math. Repts.,2, No. 1, 23–26 (1980).Google Scholar
  961. 961.
    V. Poneleit, “Lineare Kompaktheit und die Zerlegung endlich erzeugter Moduln bei einreiningen Duoringen,” Mitt. Math. Sem. Giesseen, No. 121, 85–92 (1976).Google Scholar
  962. 962.
    E. L. Popescu, “A characterization of II-reducible rings,” Rev. Roum. Math. Pure Appl.,22, No. 4, 537–540 (1977).Google Scholar
  963. 963.
    N. Popescu, “Sur l'anneau des quotients d'un anneau Noéthérien à droite par rapport à un système localisant associé à un idéal bilatère premier,” C. R. Acad. Sci.,283, No. 14, A967–969 (1976).Google Scholar
  964. 964.
    N. Popescu and T. Spircu, “Permanence theorems for semi-Artinian rings,” Rev. Roum. Math. Pures Appl.,21, No. 2, 227–231 (1976).Google Scholar
  965. 965.
    M. Y. Prest, “Some model-theoretic aspects of torsion theories,” J. Pure Appl. Algebra,12, No. 3, 295–310 (1978).Google Scholar
  966. 966.
    M. Y. Prest, “Torsion and universal Horn classes of modules,” J. London Math. Soc.,19, No. 3, 411–417 (1979).Google Scholar
  967. 967.
    M. Y. Prest, “Model-completions of some theories of modules,” J. London Math. Soc.,20, No. 3, 369–372 (1979).Google Scholar
  968. 968.
    I. Prodanov, “Precompact minimal topologies in some torsion free modules,” Godishn. Sofiisk. Un-t. Fak. Mat. Mekh.,69, 157–163 (1974–1975(1979)).Google Scholar
  969. 969.
    Ph. Quartararo and H. S. Butts, “Finite unions of ideals and modules,” Proc. Am. Math. Soc.,52, 91–96 (1975).Google Scholar
  970. 970.
    Y. Quentel, “Sur les anneaux dont tous les modules injectifs sont plats,” C. R. Acad. Sci.,280, No. 22, A1491-A1493 (1975).Google Scholar
  971. 971.
    D. Quillen, “Projective modules over polynomial rings,” Invent. Math.,36, 167–171 (1976).Google Scholar
  972. 972.
    M. A. R. Qureshi, “On noncommutative Prüfer rings,” J. Sci. Phys. Sec.,1, No. 1, 69–70 (1971).Google Scholar
  973. 973.
    F. Rado, “A generalization of the valued vector space,” Mathematica (RSR),19, No. 2, 203–209 (1977).Google Scholar
  974. 974.
    S. Raghavan, Balwant Singh, and R. Sridharan, Homological Methods in Commutative Algebra (Mathematical Pamphlets), Oxford Univ. Press, Delhi 1. a. (1975).Google Scholar
  975. 975.
    V. S. Ramamurthi, “On modules with projective character modules,” Math. Jpn.,23, No. 2, 181–184 (1978).Google Scholar
  976. 976.
    V. S. Ramamurthi and E. A. Rutter, Jr., “On cotorsion radicals,” Pac. J. Math.,62, No. 1, 163–172 (1976).Google Scholar
  977. 977.
    M. Ramras, “The center of an order with finite global dimension,” Trans. Am. Math. Soc.,210, 249–257 (1975).Google Scholar
  978. 978.
    K. M. Rangaswamy, “Modules with finite spanning dimension,” Can. Math. Bull.,20, No. 2, 255–262 (1977).Google Scholar
  979. 979.
    K. M. Rangaswamy, “An aspect of purity and its dualization in abelian groups and modules,” in: Symp. Math. Ist. Naz. Alta Mat. Francesco Severi, Vol. 23, Roma (1979), pp. 307–320.Google Scholar
  980. 980.
    W. H. Rant, “Minimally generated modules,” Can. Math. Bull.,23, No. 1, 103–105 (1980).Google Scholar
  981. 981.
    R. Raphael, “No rings have injective effacements,” J. Pure Appl. Algebra,8, No. 3, 285–288 (1976).Google Scholar
  982. 982.
    R. Raphael, “Autour de la régularité,” in: Séminaire d'Algèbre Noncommutative (année 1975-76), Exp. No. 7, Publ. Math. Orsay, Nos. 186-7655, U.E.R. Math., Univ. Paris XI, Orsay (1976).Google Scholar
  983. 983.
    R. Raphael, “Fully idempotent factorization rings,” Commun. Algebra,7, No. 6, 547–563 (1979).Google Scholar
  984. 984.
    L. J. Ratliff and J. C. Robson, “Minimal bases for modules,” Houston J. Math.,4, No. 4, 593–596 (1978).Google Scholar
  985. 985.
    B. K. Ray, “Remarks on some theorems of Feller and Swokowski,” Math. Seminar Notes,6, No. 2, 359–362 (1978).Google Scholar
  986. 986.
    J. Raynaud, “Localisations et topologie de Stone,” C. R. Acad. Sci.,282, No. 24, A1407-A1410 (1976).Google Scholar
  987. 987.
    J. Raynaud, “Localizations stables par enveloppes injectives,” C. R. Acad. Sci.,282, No. 24, A1407-A1410 (1976).Google Scholar
  988. 988.
    J. Raynaud, “Localisations premiers et copremiers. Localisations stables par enveloppes injectives,” in: Ring Theory. Proc. Antwerp Conf., 1977, New York-Basel (1978), pp. 81–111.Google Scholar
  989. 989.
    M. B. Rege and K. Varadarajan, “Chain conditions and pure-exactness,” Pac. J. Math.,72, No. 1, 223–235 (1977).Google Scholar
  990. 990.
    J. D. Reid, “Twisted group rings which are semiprime Goldie rings,” Glasgow Math. J.,16, No. 1, 1–11 (1975).Google Scholar
  991. 991.
    I. Reiner, Maximal Orders, Academic Press, London (1975), (L.M.S. Monogr. No. 5).Google Scholar
  992. 992.
    I. Reiten, “Stable equivalence of dualizing R-varieties. VI. Nakayama dualizing H-varieties,” Adv. Math.,17, No. 2, 196–211 (1975).Google Scholar
  993. 993.
    I. Reiten, “Stable equivalence for some categories with radical square zero,” Trans. Am. Math. Soc.,212, 333–345 (1975).Google Scholar
  994. 994.
    I. Reiten, “Stable equivalence of self-injective algebras,” J. Algebra,40, No. 1, 63–74 (1976).Google Scholar
  995. 995.
    I. Reiten, “Almost split sequences for group algebras of finite representation type,” Trans. Am. Math. Soc.,233, 125–136 (1977).Google Scholar
  996. 996.
    I. Reiten, “A note on stable equivalence and Nakayama algebras,” Proc. Am. Math. Soc.,71, No. 2, 157–163 (1978).Google Scholar
  997. 997.
    I. Reiten, “Algebras stably equivalent to Nakayama algebras of Loewy length at most 4,” J. Austral. Math. Soc.,A27, No. 1, 37–50 (1979).Google Scholar
  998. 998.
    I. Reiten, “Almost split sequences,” in: Ring Theory. Proc. Antwerp Conf., 1978, New York-Basel (1979), pp. 513–533.Google Scholar
  999. 999.
    G. Renault, “Sur des conditions de chaines ascendantes dans des modules libres,” in: Sem. Alg. Non-commutative (1975–1976), Paris XI, Orsay (1976).Google Scholar
  1000. 1000.
    G. Renault, “Sur des conditions de chaines ascendantes dans des modules libres,” J. Algebra,47, No. 2, 268–275 (1977).Google Scholar
  1001. 1001.
    G. Renault, “Actions des groupes et anneaux réguliers injectifs,” Lect. Notes Math.,734, 236–247 (1979).Google Scholar
  1002. 1002.
    R. Resco, “A dimension theorem for division rings,” Isr. J. Math.,35, No. 3, 215–221 (1980).Google Scholar
  1003. 1003.
    P. Ribenboim, “Valuations and lengths of constructible modules,” in: Rings, Modules and Radicals, Amsterdam-London (1973), pp. 447–456.Google Scholar
  1004. 1004.
    P. Ribenboim, “Valuations and lengths of constructible modules,” J. Reine Angew. Math.,283–284, 186–201 (1976).Google Scholar
  1005. 1005.
    R. Richards, “Noetherian prime rings of Krull dimension one,” Commun. Algebra,7, No. 8, 845–873 (1979).Google Scholar
  1006. 1006.
    F. Richman, “The constructive theory of KT -modules,” Pac. J. Math.,61, No. 1, 263–274 (1975).Google Scholar
  1007. 1007.
    F. Richman, “A guide to valuated groups,” Lect. Notes Math.,616, 73–86 (1977).Google Scholar
  1008. 1008.
    F. Richman and E. Walker, “Valuated groups,” J. Algebra,56, No. 1, 145–167 (1979).Google Scholar
  1009. 1009.
    D. Rimer, “Éléments de la théorie des pseudomodules,” Proc. Inst. Math. Iasi, 75–84 (1976).Google Scholar
  1010. 1010.
    Ringe, Moduln und homologische Methoden, Tagungsber. Math. Forschungsinst. Oberwolfach, No. 22, 1–14 (1976).Google Scholar
  1011. 1011.
    Ringe, Moduln und homologische Methoden, Tagungsber. Math. Forschungsinst. Oberwolfach, No. 20, 1–15 (1977).Google Scholar
  1012. 1012.
    C. M. Ringel, “Unions of chains of indecomposable modules,” Commun. Algebra,3, No. 12, 1121–1144 (1975).Google Scholar
  1013. 1013.
    C. M. Ringel, “Finite-dimensional hereditary algebras of wild representation type,” Math. Z.,161, No. 3, 235–256 (1978).Google Scholar
  1014. 1014.
    C. M. Ringel, “The spectrum of a finite-dimensional algebra,” in: Ring Theory. Proc. Antwerp Conf., 1978, New York-Basel (1979), pp. 535–598.Google Scholar
  1015. 1015.
    M. J. Rios, “Sobre filtres de Gabriel. IV. (Modulos pianos y anillos regulares relativos),” An. Inst. Mat. Univ. Nac. Auton. Mex.,17, No. 1, 95–108 (1977).Google Scholar
  1016. 1016.
    E. de Robert, “Suites exactes absolument scindées,” C. R. Acad. Sci.,A284, No. 21, 1337–1340 (1977).Google Scholar
  1017. 1017.
    R. N. Roberts, “Krull dimension for Artinian modules over quasi local commutative rings,” Q. J. Math.,26, No. 103, 269–273 (1975).Google Scholar
  1018. 1018.
    J. C. Robson, “Cyclic and faithful objects in quotient categories with application to Noetherian simple or Asano rings,” Lect. Notes Math.,545, 151–172 (1976).Google Scholar
  1019. 1019.
    J. C. Robson, “Quotient categories and Weyl algebras,” Lect. Notes Math.,586, 101–109 (1977).Google Scholar
  1020. 1020.
    R. W. Roggenkamp, “Injective modules for group rings and Gorenstein orders,” J. Algebra,24, No. 3, 465–472 (1973).Google Scholar
  1021. 1021.
    R. W. Roggenkamp, “Bass algebras,” J. Pure Appl. Algebra,9, No. 2, 169–179 (1977).Google Scholar
  1022. 1022.
    R. W. Roggenkamp, “Some examples of orders and global dimension two,” Math. J.,154, No. 3, 225–238 (1977).Google Scholar
  1023. 1023.
    R. W. Roggenkamp, “Orders of global dimension two,” Math. Z.,160, No. 1, 63–68 (1978).Google Scholar
  1024. 1024.
    R. W. Roggenkamp, “Algebras of global dimension two,” Arch. Math.,30, No. 4, 385–390 (1978).Google Scholar
  1025. 1025.
    M. Roitman, “On Serre's problem on projective modules,” Proc. Am. Math. Soc.,50, 45–52 (1975).Google Scholar
  1026. 1026.
    M. Roitman, “Completely unimodular rows to invertible matrices,” J. Algebra,49, No. 1, 206–211 (1977).Google Scholar
  1027. 1027.
    M. Roitman, “A note on Quillen's paper ‘Protective modules over polynomial rings’,” Proc. Am. Math. Soc.,64, No. 2, 231–232 (1977).Google Scholar
  1028. 1028.
    M. Roitman, “On projective modules over polynomial rings,” J. Algebra,58, No. 1, 51–63 (1979).Google Scholar
  1029. 1029.
    A. Rosenberg, “La dimension globale d'extension d'Ore,” in: Groupe d'étude algebre. Univ. Pierre et Marie Curie, 1975–1976 (1978),1, 3/01–3/02.Google Scholar
  1030. 1030.
    B. Roux, “Sur les anneaux de Koethe,” An. Acad. Brasil. Cienc.,48, No. 1, 13–28 (1976).Google Scholar
  1031. 1031.
    L. H. Rowen, “Monomial conditions on prime rings,” Isr. J. Math.,27, No. 2, 131–149 (1977).Google Scholar
  1032. 1032.
    R. A. Rubin, “Simple maximal quotient rings,” Proc. Am. Math. Soc.,55, No. 1, 29–33 (1976).Google Scholar
  1033. 1033.
    D. E. Rush, “Remarks on flat modules,” Michigan Math. J.,23, 193–201 (1976(1977)).Google Scholar
  1034. 1034.
    E. Rutter, “OF-3 rings with ascending chain condition on annihilators,” J. Reine Angew. Math.,277, 40–44 (1975).Google Scholar
  1035. 1035.
    E. Rutter, “Dominant modules and finite localizations,” Tohoku Math. J.,27, No. 2, 225–239 (1975).Google Scholar
  1036. 1036.
    G. Sabbagh, “Catégoricitéen ϰ et stabilité: constructions les préservant et conditions de chaine,” C.R. Acad. Sci.,280, No. 9, A531-A533 (1975).Google Scholar
  1037. 1037.
    G. Sabbagh, “Catégoricité et stabilité: quelques exemples parmi les groupes et anneaux,” C. R. Acad. Sci.,280, No. 10, A603-A606 (1975).Google Scholar
  1038. 1038.
    L. Salce, “Moduli Slender su anello di Dedekind,” Ann. Univ. Ferrara,20, Sez. VII, 59–63 (1975).Google Scholar
  1039. 1039.
    D. Salles, “Anneaux semiartiniens non commutatifs,” in: Semin. P. Dubreil. Algèbre. Univ. Paris, 1972–1973,26, 2/1–2/6.Google Scholar
  1040. 1040.
    D. Salles, “Anneaux semiartiniens non commutatifs,” in: Sem. d'Algebre non commutative. Publ. Math. Orsay, No. 107–7523, Univ. Paris XI (1974).Google Scholar
  1041. 1041.
    D. Salles, “Anneaux de groupes semiartiniens, anneaux de groupe coherents,” C. R. Acad. Sci.,283, No. 16, A1073-A1076 (1976).Google Scholar
  1042. 1042.
    J. D. Sally and W. V. Vasconcelos, “Flat ideals. I,” Commun. Algebra,3, No. 6, 531–543 (1975).Google Scholar
  1043. 1043.
    F. L. Sandomierski, “Classical localization at prime ideals of fully bounded Noetherian rings,” in: Ring Theory. Proc. Conf., Ohio Univ., Athens, Ohio, 1976, Lect. Notes Pure Appl. Math., Vol. 25, Marcel Dekker, New York (1977), pp. 169–181.Google Scholar
  1044. 1044.
    B. Sarath, “Krull dimension and Noetherianness,” III. J. Math.,20, No. 2, 329–335 (1976).Google Scholar
  1045. 1045.
    B. Sarath and K. Varadarajan, “Divisibility of direct sums in torsion theories,” Can. J. Math.,28, No. 1, 211–214 (1976).Google Scholar
  1046. 1046.
    B. Sarath and K. Varadarajan, “Dual Goldie dimension. II,” Commun. Algebra,7, No. 17, 1885–1899 (1979).Google Scholar
  1047. 1047.
    H. Sato, “Duality of torsion modules over a QF-3 one-dimensional Gorenstein ring,” Sci. Repts. Tokyo Kyoiku Daigaku,A13, No. 347–365, 28–36 (1975).Google Scholar
  1048. 1048.
    H. Sato, “On localizations of 1-Gorenstein ring,” Sci. Repts. Tokyo Daigaku,13, No. 366–382, 188–193 (1977).Google Scholar
  1049. 1049.
    H. Sato, “Remark on localizations of Noetherian rings with Krull dimension one,” Tsukuba J. Math.,3, No. 1, 123–128 (1979).Google Scholar
  1050. 1050.
    M. Sato, “The concrete description of the colocalization,” Proc. Jpn. Acad.,52, No. 9, 502–504 (1976).Google Scholar
  1051. 1051.
    M. Sato, “On equivalences between module categories,” in: Proc. 10th Symp. Ring Theory, Matsumoto, 1977, Okayama (1978), pp. 83–94.Google Scholar
  1052. 1052.
    M. Sato, “Fuller's theorem on equivalences,” J. Algebra,52, No. 1, 274–284 (1978).Google Scholar
  1053. 1053.
    G. Scheja and U. Storch, “Quasi-Frobenius-Algebren und lokal Vollständige Durchschnitte,” Manuscr. Math.,19, No. l, 75–104 (1976).Google Scholar
  1054. 1054.
    W. Schelter, “Essential extensions and intersection theorems,” Proc. Am. Math. Soc.,53, No. 2, 328–330 (1975).Google Scholar
  1055. 1055.
    W. Schelter and L. W. Small, “Some pathological rings of quotients,” J. London Math. Soc.,14, No. 53, 200–202 (1976).Google Scholar
  1056. 1056.
    R. Schmähung, “Eine axiomatosche Kennzeichnung der Determinante auf endlich-erzeugten projektiven Moduln,” J. Reine Angew. Math.,276, 56–67 (1975).Google Scholar
  1057. 1057.
    R. Schulz, “Reflexive modules over perfect rings,” J. Algebra,61, No. 2, 527–537 (1979).Google Scholar
  1058. 1058.
    D. Segal, “On the residual simplicity of certain modules,” Proc. London Math. Soc.,34, No. 2, 327–353 (1977).Google Scholar
  1059. 1059.
    H. Sekiyama, “Trivial extension of a ring with balanced condition,” Proc. Am. Math. Soc.,77, No. 1, 1–6 (1979).Google Scholar
  1060. 1060.
    J. Shapiro, “T-torsion theories and central localizations,” J. Algebra,48, No. 1, 17–29 (1977).Google Scholar
  1061. 1061.
    J. Shapiro, “R-sequences in fully bounded Noetherian rings,” Commun. Algebra,7, No. 8, 819–831 (1979).Google Scholar
  1062. 1062.
    R. Y. Sharp, “Ramification indices and injective modules,” J. London Math. Soc.,11, No. 3, 267–275 (1975).Google Scholar
  1063. 1063.
    R. Y. Sharp, “Secondary representations for injective modules over commutative Noetherian rings,” Proc. Edinburgh Math. Soc.,20, No. 2, 143–151 (1976).Google Scholar
  1064. 1064.
    S. Shelah, “Infinite Abelian groups, Whitehead problem and some constructions,” Isr. J. Math.,18, No. 3, 243–256 (1974).Google Scholar
  1065. 1065.
    S. Shelah, “A compactness theorem for singular cardinals, free algebras. Whitehead problem and transversals,” Isr. J. Math.,21, No. 4, 319–349 (1975).Google Scholar
  1066. 1066.
    S. Shelah, “The lazy model-theoretician's guide to stability,” Log. et. Anal.,18, No. 71–72, 241–308 (1975).Google Scholar
  1067. 1067.
    S. Shelah, “Whitehead groups may be not free even assuming CH. I,” Isr. J. Math.,28, No. 3, 193–204 (1977).Google Scholar
  1068. 1068.
    C. Sherman, “A note on the localization theorem for projective modules,” Proc. Am. Math. Soc.,75, No. 2, 207–208 (1979).Google Scholar
  1069. 1069.
    M. Shinagawa, “On flat extensions of Krull domains,” Hiroshima Math. J.,5, No. 3, 517–524 (1975).Google Scholar
  1070. 1070.
    R. C. Shock, “Dual generalizations of the Artinian and Noetherian conditions,” Pac. J. Math.,54, No. 2, 227–235 (1974).Google Scholar
  1071. 1071.
    R. C. Shock, “On orders in QF-2 rings,” Math. Scand.,38, No. 2, 192–198 (1976).Google Scholar
  1072. 1072.
    T. S. Shores, “A topological criterion for primary decomposition,” Acta Math. Acad. Sci. Hung.,28, Nos. 3–4, 383–387 (1976).Google Scholar
  1073. 1073.
    T. Shudo, “A note on coalgebras and rational modules,” Hiroshima Math. J.,6, No. 2, 297–304 (1976).Google Scholar
  1074. 1074.
    S. K. Sim, “On rings of which every prime kernel functor is symmetric,” Nanta Math.,7, No. 2, 69–70 (1974).Google Scholar
  1075. 1075.
    S. K. Sim, “Prime ideals and symmetric idempotent kernel functors,” Rev. Union Mat. Argent.,27, No. 2, 59–64 (1975).Google Scholar
  1076. 1076.
    S. K. Sim, “Prime ideals and symmetric idempotent kernel functors,” Nanta Math.,9, No. 2, 121–124 (1976).Google Scholar
  1077. 1077.
    D. Simson, “Pure semisimple categories and rings of finite representation type,” J. Algebra,48, No. 2, 290–294 (1977); correction: ibid.,67, No. 1, 254–256 (1980).Google Scholar
  1078. 1078.
    D. Simson, “Categories of representations of species,” J. Pure Appl. Algebra,14, 101–114 (1979).Google Scholar
  1079. 1079.
    S. Singh, “Modules over hereditary Noetherian prime rings, II,” Can. J. Math.,28, No. 1, 73–82 (1976).Google Scholar
  1080. 1080.
    S. Singh, “Some decomposition theorems in Abelian groups and their generalizations,” in: Ring Theory. Proc. Ohio Univ. Conf., 1976, New York-Basel (1977), pp. 183–189.Google Scholar
  1081. 1081.
    S. Singh, “(hnp)-rings over which every module admits a basic submodule,” Pac. J. Math.,76, No. 2, 509–512 (1978).Google Scholar
  1082. 1082.
    S. Singh and M. Asrar, “Rings in which every finitely generated left ideal is quasiprojective,” J. Indian Math. Soc.,40, Nos. 1–4, 195–205 (1976).Google Scholar
  1083. 1083.
    S. Singh and A. Beg, “Restricted balanced rings,” Arch. Math.,33, No. 2, 127–130 (1979).Google Scholar
  1084. 1084.
    S. Singh and F. Mehdi, “Multiplication modules,” Can. Math. Bull.,22, No. 1, 93–98 (1979).Google Scholar
  1085. 1085.
    S. Singh and S. Talwar, “Pure submodules of modules over bounded (hnp)-rings,” Arch. Math.,30, No. 6, 570–577 (1978).Google Scholar
  1086. 1086.
    S. Singh and S. Talwar, “Modules over bounded hereditary Noetherian prime rings,” Arch. Math.,32, No. 2, 134–142 (1979).Google Scholar
  1087. 1087.
    G. Sjödin, “On the indecomposable modules over certain wild algebras,” Stockholms Univ. Mat. Inst. (Medd.), No. 1, 1–17 (1979).Google Scholar
  1088. 1088.
    S. Smale, “Global dimension of special endomorphism rings over Artin algebras,” Ill. J. Math.,22, No. 3, 414–427 (1978).Google Scholar
  1089. 1089.
    S. Smale, “The structure of special endomorphism rings over Artinian algebras,” Ill. J. Math.,22, No. 3, 428–442 (1978).Google Scholar
  1090. 1090.
    S. Smale, “The inductive step of the second Brauer-Thrall conjecture,” Can. J. Math.,32, No. 2, 342–349 (1980).Google Scholar
  1091. 1091.
    Bohumil Smarda, “The lattice of topologies of topological L-groups,” Czechosl. Mat. J.,26, No. 1, 128–136 (1976).Google Scholar
  1092. 1092.
    P. F. Smith, “A note on projective modules,” Proc. R. Soc. Edinburgh,A75, No. 1, 23–31 (1976).Google Scholar
  1093. 1093.
    P. F. Smith, “Some rings which are characterized by their finitely generated modules,” Q. J. Math.,29, No. 1, 113, 101–109 (1978).Google Scholar
  1094. 1094.
    P. F. Smith, “Finitely embedded modules over group rings,” Proc. Edinburgh Math. Soc.,21, Ser. 2, No. 1, 55–64 (1978).Google Scholar
  1095. 1095.
    P. F. Smith, “Decomposing modules into projectives and injectives,” Pac. J. Math.,76, No. 1, 247–266 (1978).Google Scholar
  1096. 1096.
    P. F. Smith, “Rings characterized by their cyclic modules,” Can. J. Math.,31, No. 1, 93–111 (1979).Google Scholar
  1097. 1097.
    P. F. Smith, “On the structure of certain PP-rings,” Math. Z.,166, No. 2, 147–157 (1979).Google Scholar
  1098. 1098.
    R. Snider, “Rings whose ideals have projective covers,” Arch. Math.,27, No. 4, 378–382 (1976).Google Scholar
  1099. 1099.
    R. Snider, “On the singular ideal of a group algebra,” Commun. Algebra,4, No. 11, 1087–1089 (1976).Google Scholar
  1100. 1100.
    R. Snider, “Injective hulls of simple modules over group rings,” in: Ring Theory. Proc. Ohio Univ. Conf., 1976, New York-Basel (1977), pp. 223–226.Google Scholar
  1101. 1101.
    D. Spulber, “On localizing system of M-dense left ideals of a ring,” Bull. Math. Soc. Sci. Math. RSR,18, Nos. 1–2, 203–206 (1974(1975)).Google Scholar
  1102. 1102.
    D. Spulber, “F-Dedekind rings,” Bull. Math. Soc. Sci. Math. RSR,18, Nos. 3–4, 379–389 (1974(1976)).Google Scholar
  1103. 1103.
    D. Spulber, “Observations sur les systèmes localisants réguliers et leur liaison avec la transformée Nagata d'un idéal,” Rev. Roumaine de Math. Pure Appl.,21, No. 5, 559–563 (1976).Google Scholar
  1104. 1104.
    D. Spulber, “Induced flat epimorphisms of rings,” Rev. Roumaine de Math. Pure Appl.,23, No. 3, 495–496 (1978).Google Scholar
  1105. 1105.
    D. Spulber, “TP-rings,” Rev. Roumaine Math. Pures Appl.,23, No. 4, 611–615 (1978).Google Scholar
  1106. 1106.
    J. T. Stafford, “Completely faithful modules and ideals of simple Noetherian rings,” Bull. London Math. Soc.,8, No. 2, 168–173 (1976).Google Scholar
  1107. 1107.
    J. T. Stafford, “Weyl algebras are stably free,” J. Algebra,48, No. 2, 297–304 (1977).Google Scholar
  1108. 1108.
    J. T. Stafford, “Stable structure of noncommutative Noetherian rings. I,” J. Algebra,47, No. 2, 244–267 (1977); II, ibid.,52, No. 1, 218–235 (1978).Google Scholar
  1109. 1109.
    J. T. Stafford, “A simple Noetherian ring not Morita equivalent to a domain,” Proc. Am. Math. Soc.,68, No. 2, 159–160 (1978).Google Scholar
  1110. 1110.
    J. T. Stafford, “Module structure of Weyl algebras,” J. London Math. Soc.,18, No. 3, 429–442 (1978).Google Scholar
  1111. 1111.
    J. T. Stafford, “Cancellation for nonprojective modules,” Lect. Notes Math.,700, 3–15 (1979).Google Scholar
  1112. 1112.
    J. T. Stafford, “Simple Noetherian rings,” Lect. Notes Math.,700, 230–231 (1979).Google Scholar
  1113. 1113.
    J. T. Stafford, “Morita equivalence of simple Noetherian rings,” Proc. Am. Math. Soc.,74, No. 2, 212–214 (1979).Google Scholar
  1114. 1114.
    J. T. Stafford, “On the regular elements of Noetherian rings,” in: Ring Theory. Proc. Antwerp Conf., 1978. New York-Basel (1979), pp. 257–277.Google Scholar
  1115. 1115.
    J. T. Stafford, “Projective modules over polynomial extensions of division rings,” Invent. Math.,59, No. 2, 105–117 (1980).Google Scholar
  1116. 1116.
    R. O. Stanton, “An invariant for modules over a discrete valuation ring,” Proc. Am. Math. Soc.,49, No. 1, 51–54 (1975).Google Scholar
  1117. 1117.
    R. O. Stanton, “Relatives-invariants,” Proc. Am. Math. Soc.,65, No. 2, 221–224 (1977).Google Scholar
  1118. 1118.
    R. O. Stanton, “Decomposition of modules over a discrete valuation ring,” J. Austral. Math. Soc.,A27, No. 3, 284–288 (1979).Google Scholar
  1119. 1119.
    O. Steinfeld, “Some characterizations of semisimple rings with minimum condition on principal left ideals,” Acta Math. Acad. Sci. Hung.,26, Nos. 3–4, 377–384 (1975).Google Scholar
  1120. 1120.
    B. Stenström, “The maximal ring of quotients of a generalized matrix ring,” Stud. Alg. Anwend.,1, 65–67 (1976).Google Scholar
  1121. 1121.
    R. Strebel, “A homological fitness criterion,” Math. Z.,151, No. 3, 263–275 (1976).Google Scholar
  1122. 1122.
    K. Sugano, “On projective H-separable extension,” Hokkaido Math. J.,5, No. 1, 44–54 (1976).Google Scholar
  1123. 1123.
    T. Sumioka, “On nonsingular QF-3′ rings with injective dimension ≤1,” Osaka J. Math.,15, No. 1, 1–12 (1978).Google Scholar
  1124. 1124.
    T. Sumioka, “On finite-dimensional QF-3′ rings,” in: Proc. 10th Symp. Ring Theory, Matsumoto, 1977, Okayama (1978), pp. 99–105.Google Scholar
  1125. 1125.
    A. A. Suslin, “The cancellation problem for projective modules and related topics,” Lect. Notes Math.,734, 323–338 (1979).Google Scholar
  1126. 1126.
    R. G. Swan, “Serre's problem,” Queen's Pap. Pure Appl. Math., No. 42, 2–60 (1975).Google Scholar
  1127. 1127.
    R. G. Swan, “Topological examples of projective modules,” Trans. Am. Math. Soc.,230, 201–234 (1977).Google Scholar
  1128. 1128.
    R. G. Swan, “Projective modules over Laurent polynomial rings,” Trans. Am. Math. Soc.,237, 111–120 (1978).Google Scholar
  1129. 1129.
    A. Szendrei, “On affine modules. Contributions to universal algebra,” Colloq. Math. Soc. J. Bolyai,17, 457–464 (1977).Google Scholar
  1130. 1130.
    G. Szeto, “The localization of zero-dimensional rings,” Bull. Soc. Math. Belg.,28, No. 3, 193–196 (1976).Google Scholar
  1131. 1131.
    G. Szeto, “The structure of semiperfect rings,” Commun. Algebra,5, No. 3, 219–229 (1977).Google Scholar
  1132. 1132.
    G. Szeto, “On exact sequences of modules,” Arch. Math.,29, No. 1, 67–71 (1977).Google Scholar
  1133. 1133.
    G. Szeto, “Classical algebras of quotients and central quotients of algebras,” Acta Math. Acad. Sci. Hung.,32, Nos. 1–2, 59–62 (1978).Google Scholar
  1134. 1134.
    G. Szeto, “On weakly biregular algebra,” Bull. Acad. Pol. Sci. Sec. Sci. Math., Astron. Phys.,26, Nos. 9–10, 775–780 (1978).Google Scholar
  1135. 1135.
    G. Szeto, “PP rings and reduced rings,” Czech. Mat. J.,29, No. 1, 53–56 (1979).Google Scholar
  1136. 1136.
    H. Tachikawa, “Balancedness and left serial algebras of finite type,” in: Proc. Int. Conf. on Representations of Algebras (Carleton Univ., Ottawa, Ont., 1974), Paper No. 26. Carleton Math. Lect. Notes No. 9, Carleton Univ., Ottawa (1974).Google Scholar
  1137. 1137.
    H. Tachikawa, “Balanced modules and constructible submodules,” Sci. Repts. Tokyo Kyoiku Daigaku,A13, Nos. 347–365, 37–45 (1975).Google Scholar
  1138. 1138.
    H. Tachikawa, “Commutative perfect QF-1 rings,” Proc. Am. Math. Soc.,68, No. 3, 261–264 (1978).Google Scholar
  1139. 1139.
    T. Takeuchi, “On cofinite-dimensional modules,” Hokkaido Math. J.,5, No. 1, 1–43 (1976).Google Scholar
  1140. 1140.
    S. Talwar, “Modules over bounded hereditary Noetherian prime rings. II,” Arch. Math.,34, No. 1, 21–26 (1980).Google Scholar
  1141. 1141.
    M. L. Teply, “Generalizations of the simple torsion class and the splitting property,” Can. J. Math.,27, No. 5, 1056–1074 (1975).Google Scholar
  1142. 1142.
    M. L. Teply, “Prime singular-splitting rings with finiteness conditions,” Lect. Notes Math.,545, 173–194 (1976).Google Scholar
  1143. 1143.
    M. L. Teply, “Subidealizers,” Lect. Notes Math.,700, 232–234 (1979).Google Scholar
  1144. 1144.
    J. C. Thomas, “Homological dimension under change of rings,” Commun. Algebra,7, No. 6, 625–640 (1979).Google Scholar
  1145. 1145.
    P. M. Timothy, “Quelques resultats sur les anneaux semi-Noéthériens,” Bull. Acad. Pol. Sci. Ser. Sci. Math., Astron. Phys.,24, No. 10, 829–834 (1976).Google Scholar
  1146. 1146.
    C. Tisseron, “Sur les anneaux tels que tout produit de copies d'un module quasiinjectif soit module quasiinjectif,” Ann. Mat. Pura Appl.,105, 37–71 (1975).Google Scholar
  1147. 1147.
    C. Tisseron, “Sur les anneaux tels que tout produit de copies d'un module quasiinjectif soit un module quasiinjectif. II,” Ann. Mat. Pura Appl.,110, No. 8, 15–28 (1976).Google Scholar
  1148. 1148.
    A. K. Tiwary and B. M. Pandey, “Rings over which every module is quasipolysimple,” Progr. Math. (Allahabad),9, No. 1, 1–6 (1975).Google Scholar
  1149. 1149.
    A. K. Tiwary and B. M. Pandey, “Pseudoprojective and pseudoinjective modules,” Indian J. Pure Appl. Math.,9, No. 9, 941–949 (1978).Google Scholar
  1150. 1150.
    A. K. Tiwary and S. A. Paramhans, “On closure of submodules,” Indian J. Pure Appl. Math.,8, No. 11, 1415–1419 (1977).Google Scholar
  1151. 1151.
    H. Tominaga, “On left s-unital rings. I, II,” Math. J. Okayama Univ.,18, No. 2, 117–133 (1976);19, No. 2, 171–182 (1976/1977).Google Scholar
  1152. 1152.
    G. Törner, “Some remarks on the structure of indecomposable injective modules over valuation rings,” Commun. Algebra,4, No. 5, 467–482 (1976).Google Scholar
  1153. 1153.
    G. Törner, “Unzerlegbare, injektive Moduln über Kettenringen,” J. Reine Angew. Math.,285, 172–180 (1976).Google Scholar
  1154. 1154.
    J. Towber, “Two new functors from modules to algebras,” J. Algebra,47, No. 1, 80–104 (1977).Google Scholar
  1155. 1155.
    R. Treger, “Reflexive modules,” J. Algebra,54, No. 2, 444–466 (1978).Google Scholar
  1156. 1156.
    M. A. Upham, “A new proof of a theorem of Michler,” Arch. Math.,31, No. 6, 554–561 (1979).Google Scholar
  1157. 1157.
    M. A. Upham, “Localization and completion of FBN hereditary rings,” Commun. Algebra,7, No. 12, 1269–1307 (1979).Google Scholar
  1158. 1158.
    R. Ursianu, “Asupra submodulelor diferentiale,” Std. Si Cerc. Mat.,29, No. 1, 85–89 (1977).Google Scholar
  1159. 1159.
    M. Uscki, “On exact modules over a commutative ring,” Colloq. Math.,40, No. 2, 197–202 (1979).Google Scholar
  1160. 1160.
    J. Valette, “Sur les modules projectifs,” C. R. Acad. Sci.,282, No. 16, A281-A283 (1976).Google Scholar
  1161. 1161.
    P. Vamos, “Test modules and cogenerators,” Proc. Am. Math. Soc.,56, No. 1, 8–10 (1976).Google Scholar
  1162. 1162.
    P. Vamos, “Rings with duality,” Proc. London Math. Soc.,35, No. 2, 275–289 (1977).Google Scholar
  1163. 1163.
    P. Vamos, “The decomposition of finitely generated modules and fractionally self-injective rings,” J. London Math. Soc.,16, No. 2, 209–220 (1977).Google Scholar
  1164. 1164.
    P. Vamos, “Semilocal Noetherian Pi-rings,” Bull. London Math. Soe.,9, No. 3, 251–256 (1977).Google Scholar
  1165. 1165.
    P. Vamos, “Finitely generated Artinian and distributive modules are cyclic,” Bull. London Math. Soc.,10, No. 3, 287–288 (1978).Google Scholar
  1166. 1166.
    P. Vamos, “Sheaf-theoretical methods in the solution of Kaplansky's problem,” Lect. Notes Math.,753, 732–738 (1979).Google Scholar
  1167. 1167.
    K. Varadarajan, “M-projective and strongly M-projective modules,” Ill. J. Math.,20, No. 3, 507–515 (1976).Google Scholar
  1168. 1168.
    K. Varadarajan, “Study of certain radicals,” J. Pure Appl. Algebra,9, No. 1, 107–120 (1976).Google Scholar
  1169. 1169.
    K. Varadarajan, “Dual Goldie dimension,” Commun. Algebra,7, No. 6, 565–610 (1979).Google Scholar
  1170. 1170.
    K. Varadarajan, “Modules with supplements,” Pac. J. Math.,82, No. 2, 559–564 (1979).Google Scholar
  1171. 1171.
    K. Varadarajan, “Study of certain preradicals,” Commun. Algebra,8, No. 2, 185–209 (1980).Google Scholar
  1172. 1172.
    W. V. Vasconcelos, Divisor Theory in Module Categories, North Holland Math. Stud., Vol. 14, North-Holland, Amsterdam-Oxford, Amer. Eisevier, New York (1974).Google Scholar
  1173. 1173.
    W. V. Vasconcelos, “The λ-dimension of a ring,” Queen's Pap. Pure Appl. Math., No. 43, 213–224 (1975).Google Scholar
  1174. 1174.
    W. V. Vasconcelos, “Superregularity in local rings,” J. Pure Appl. Algebra,7, No. 2, 231–233 (1976).Google Scholar
  1175. 1175.
    W. V. Vasconcelos, “On the arithmetic of flat ideals and epimorphisms,” Notas e Comuns. Mat., No. 70 (1976).Google Scholar
  1176. 1176.
    W. V. Vasconcelos, The Rings of Dimension Two, Marcel Dekker, New York-Basel (1976).Google Scholar
  1177. 1177.
    W. V. Vasconcelos and R. Wiegandt, “Bounding the number of generators of a module,” Math. Z.,164, No. 1, 1–7 (1978).Google Scholar
  1178. 1178.
    A. Verschoren, “A note on strictly local kernel functors,” Bull. Soc. Math. Belg.,28, No. 3, 179–192 (1976).Google Scholar
  1179. 1179.
    A. Verschoren, “Localization and the Gabriel-Popescu embedding,” Commun. Algebra,6, No. 15, 1563–1567 (1978).Google Scholar
  1180. 1180.
    A. Verschoren, “Localization of (pre)-sheaves of modules and structure sheaves,” in: Ring Theory. Proc. Antwerp Conf., 1977, New York-Basel (1978), pp. 181–207.Google Scholar
  1181. 1181.
    A. Verschoren, “Localization of bimodules and PI-rings,” in: Ring Theory. Proc. Antwerp Conf., 1978, New York-Basel (1979), pp. 329–350.Google Scholar
  1182. 1182.
    A. Verschoren, “Torsion free extensions and perfect localizations,” Commun. Algebra,8, No. 9, 839–859 (1980).Google Scholar
  1183. 1183.
    A. Verschoren and F. van Oystaeyen, “Localization of sheaves of modules,” Proc. Kon. Ned. Akad. Wetensch.,A79, No. 5, 470–481 (1977).Google Scholar
  1184. 1184.
    R. Vidal, “Modules de type quasi fini sur un anneau non commutatif,” Semin. P. Dubreil. Algèbre. Univ. Pierre et Marie Curie,28, 8/1–8/6 (1975).Google Scholar
  1185. 1185.
    C. L. Wangneo and K. Tewari, “Right Noetherian rings integral over their centers,” Commun. Algebra,7, No. 15, 1573–1598 (1979).Google Scholar
  1186. 1186.
    R. B. Warfield, Jr., “Countably generated modules over commutative Artinian rings,” Pac. J. Math.,60, No. 2, 289–302 (1975).Google Scholar
  1187. 1187.
    R. B. Warfield, Jr., “Large modules over artinian rings,” in: Represent. Theory Algebras. Proc. Philadelphia Conf., New York-Basel (1978), pp. 451–463.Google Scholar
  1188. 1188.
    R. B. Warfield, Jr., “Stable equivalence of matrices and resolutions,” Commun. Algebra,6, No. 17, 1811–1828 (1978).Google Scholar
  1189. 1189.
    R. B. Warfield, Jr., “Bezout rings and serial rings,” Commun. Algebra,7, No. 5, 533–545 (1979).Google Scholar
  1190. 1190.
    R. B. Warfield, Jr., “Stable generation of modules,” Lect. Notes Math.,700, 16–33 (1979).Google Scholar
  1191. 1191.
    R. B. Warfield, Jr., “Modules over fully bounded Noetherian rings,” Lect. Notes Math.,734, 339–352 (1979).Google Scholar
  1192. 1192.
    J. Waschbusch, “Unzerlegbare Moduln über Artinringen,” Arch. Math.,28, No. 5, 478–490 (1977).Google Scholar
  1193. 1193.
    J. Waschbusch, “Über Bimoduln in Artinringen vom endlichen Modultyp,” Commun. Algebra,8, No. 2, 105–151 (1980).Google Scholar
  1194. 1194.
    C. Webb, “Tensor products of separable reduced primary modules,” Proc. Edinburgh Math. Soc.,22, No. 1, 23–26 (1979).Google Scholar
  1195. 1195.
    E. C. Weinberg, “Relative injectives,” in: Symp. Math. Ist. Naz. Alta Mat., Vol. 21, London-New York (1977), pp. 555–564.Google Scholar
  1196. 1196.
    E. Wexler-Kreindler, “Propriétés de transfert des extensions d'Ore,” Lect. Notes Math.,641, 235–251 (1978).Google Scholar
  1197. 1197.
    E. Wexler-Kreindler, “Polynomes d'Ore, séries formelles tordues et anneaux filtres complets héréditaires,” Commun. Algebra,8, No. 4, 339–371 (1980).Google Scholar
  1198. 1198.
    R. Wiegand, “Rings of bounded module type,” Lect. Notes Math.,700, 143–150 (1979).Google Scholar
  1199. 1199.
    R. Wiegand and S. Wiegand, “Commutative rings whose finitely generated modules are direct sums of cyclics,” Lect. Notes Math.,616, 406–423 (1977).Google Scholar
  1200. 1200.
    R. W. Wilkerson, “Injective quotient rings of group rings,” Tydskr. Naturwetenskap.,16, No. l, 24–27 (1976).Google Scholar
  1201. 1201.
    A. Wirth, “Locally compact tight Riesz groups,” J. Austral. Math. Soc.,19, No. 2, 247–251 (1975).Google Scholar
  1202. 1202.
    R. Wisbauer, “Injektive und projektive Moduln über nichtassoziativen Ringen,” Arch. Math.,28, No. 5, 460–468 (1977).Google Scholar
  1203. 1203.
    R. Wisbauer, “Cosemisimpie modules and nonassociative V-rings,” Commun. Algebra,5, No. 11, 1193–1209 (1977).Google Scholar
  1204. 1204.
    R. Wisbauer, “Nonassociative left regular and biregular rings,” J. Pure Appl. Algebra,10, No. 2, 215–226 (1977).Google Scholar
  1205. 1205.
    R. Wisbauer, “σ-semiperfekte und σ-perfekte Moduln,” Math. Z.,162, No. 2, 131–138 (1978).Google Scholar
  1206. 1206.
    R. Wisbauer, “Separable Moduln von Algebren über Ringen,” J. Reine Angew. Math.,303–304, 221–230 (1978).Google Scholar
  1207. 1207.
    R. Wisbauer, “Erbliche Moduln und nichtassoziative Ringe,” Commun. Algebra,7, No. l, 47–77 (1979).Google Scholar
  1208. 1208.
    R. Wisbauer and L. Witkowski, “On linearly topological modules,” Demonstr. Math.,10, No. 2, 317–327 (1977).Google Scholar
  1209. 1209.
    R. W. Wong, “Free ideal monoid rings,” J. Algebra,53, No. 1, 21–35 (1978).Google Scholar
  1210. 1210.
    R. W. Wong, “Finitely generated ideals in free group algebras,” Commun. Algebra,7, No, 9, 875–883 (1979).Google Scholar
  1211. 1211.
    T. Würfel, “Ring extensions and essential monomorphisms,” Proc. Am. Math. Soc.,69, No. 1, 1–7 (1978).Google Scholar
  1212. 1212.
    S. M. Yanya, “P-neat exact sequences,” Stud. Sci. Math. Hung.,11, Nos. 3–4, 363–371 (1976).Google Scholar
  1213. 1213.
    S. M. Yanya and A. Al-Daffa, “On cogenerators in modules,” Math. Sem. Notes Kobe Univ.,7, No. 1, 153–166 (1979).Google Scholar
  1214. 1214.
    S. M. Yanya and A. Al-Daffa, “Cogenerators in modules over Dedekind domains,” Math. Sem. Notes Kobe Univ.,8, No. 1, 91–102 (1980).Google Scholar
  1215. 1215.
    K. Yamagata, “On artinian rings of finite representation type,” J. Algebra,50, No. 2, 276–283 (1978).Google Scholar
  1216. 1216.
    Chi Ming R. Yue, “On annihilator ideals,” Math. J. Okayama Univ.,19, No. 1, 51–53 (1976).Google Scholar
  1217. 1217.
    Chi Ming R. Yue, “On von Neumann regular rings. II,” Math. Scand.,39, No. 2, 167–170 (1976).Google Scholar
  1218. 1218.
    Chi Ming R. Yue, “On annihilators and quasi-Frobenius rings,” Bull. Soc. Math. Belg.,28, No. 2, 115–120 (1976).Google Scholar
  1219. 1219.
    Chi Ming R. Yue, “On annihilators and continuous regular rings,” Bull. Math. Soc. Sci. Math. RSR,20, Nos. 3–4, 423–427 (1976(1977)).Google Scholar
  1220. 1220.
    Chi Ming R. Yue, “On von Neumann regular rings. III,” Monatsh. Math.,86, No. 3, 251–257 (1978).Google Scholar
  1221. 1221.
    Chi Ming R. Yue, “On generalizations of V-rings and regular rings,” Math. J. Okayama Univ.,20, No. 2, 123–129 (1978).Google Scholar
  1222. 1222.
    Chi Ming R. Yue, “A remark on decomposable modules,” Publ. Inst. Math.,25, 101–104 (1979).Google Scholar
  1223. 1223.
    Chi Ming R. Yue, “On regular rings and V-rings,” Monatsh. Math.,88, No. 4, 335–344 (1979).Google Scholar
  1224. 1224.
    Chi Ming R. Yue, “On V-rings and prime rings,” J. Algebra,62, No. 1, 13–20 (1980).Google Scholar
  1225. 1225.
    J. M. Zelmanowitz, “Semisimple rings of quotients,” Bull. Austral. Math. Soc.,19, No. 1, 97–115 (1978).Google Scholar
  1226. 1226.
    W. Zimmermann, “Über die aufsteigende Kettenbedingung für Annulatoren,” Arch. Math.,27, No. 3, 261–266 (1976).Google Scholar
  1227. 1227.
    W. Zimmermann, “π-Projektive Moduln,” J. Reine Angew. Math.,292, 117–124 (1977).Google Scholar
  1228. 1228.
    W. Zimmermann, “Rein injektive direkte Summen von Moduln,” Commun. Algebra,5, No. 10, 1083–1117 (1977).Google Scholar
  1229. 1229.
    B. Zimmerman-Huisgen, “Pure submodules of direct products of free modules,” Math. Ann.,224, No. 3, 233–245 (1976).Google Scholar
  1230. 1230.
    B. Zimmerman-Huisgen, “Decomposability of direct products of modules,” J. Algebra,56, No. 1, 119–128 (1979).Google Scholar
  1231. 1231.
    B. Zimmerman-Huisgen, “Rings whose right modules are direct sums of indecomposable modules,” Proc. Am. Math. Soc., No. 3, 191–197 (1977(1979)).Google Scholar
  1232. 1232.
    B. Zimmerman-Huisgen and W. Zimmerman, “Algebraically compact rings and modules,” Math. Z.,161, No. 1, 81–93 (1978).Google Scholar
  1233. 1233.
    H. Zöschinger, “Basis-Untermoduln und Quasi-kotorsions-Moduln über diskreten Bewertungsringen,” Bayer Akad. Wiss. Math.-Nat. Kl. Sitzungsber., 9–16 (1977).Google Scholar
  1234. 1234.
    H. Zöschinger, “Komplements für zyklische Moduln über Dedekindringen,” Arch. Math.,32, No. 2, 143–148 (1979).Google Scholar
  1235. 1235.
    H. Zöschinger, “Quasiseparable und koseparable Moduln über diskreten Bewrtungsringen,” Math. Scand.,44, No. 1, 17–36 (1979).Google Scholar
  1236. 1236.
    H. Zoschinger, “Koatomare Moduln,” Math. Z.,170, No. 3, 221–232 (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • V. T. Markov
  • A. V. Mikhalev
  • L. A. Skornyakov
  • A. A. Tuganbaev

There are no affiliations available

Personalised recommendations