Ukrainian Mathematical Journal

, Volume 27, Issue 2, pp 177–181 | Cite as

Conditions of equivalence of the cesaro and the Abel-Poisson methods of summation of unbounded sequences

  • N. A. Davydov
Brief Communications
  • 40 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    N. A. Davydov, “A generalization of two theorems of Hardy and Littlewood,” Ukrainsk. Matem. Zh.,26, No. 6 (1974).Google Scholar
  2. 2.
    A. Zygmund, Trigonometric Series, Cambridge University Press, Cambridge (1959).Google Scholar
  3. 3.
    G. Hardy, Divergent Series, Clarendon Press, Oxford (1949).Google Scholar
  4. 4.
    E. Titchmarsh, Theory of Functions, Clarendon Press, Oxford (1932).Google Scholar
  5. 5.
    N. A. Davydov, “The (c) property of the Cesaro and Abel-Poisson methods and theorems of Tauberian type,” Matem. Sb.,60 (102), No. 2 (1963).Google Scholar
  6. 6.
    N. A. Davydov, “On (c) points of sequences which are summable by the Abel-Poisson method,” Matem. Sb.,43 (85), No. 1 (1957).Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • N. A. Davydov
    • 1
  1. 1.Kiev Pedagogical InstituteUSSR

Personalised recommendations