Advertisement

Ukrainian Mathematical Journal

, Volume 29, Issue 5, pp 469–476 | Cite as

The topological isolator of a subgroup of finite rank

  • V. M. Poletskikh
Article
  • 30 Downloads

Keywords

Finite Rank Topological Isolator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. S. Charin, “Groups of finite rank,” Ukr. Mat. Zh.,18, No. 3, 85–96 (1966).Google Scholar
  2. 2.
    V. M. Glushkov, “Some questions in the theory of nilpotent and locally nilpotent torsion -free groups,” Mat. Sb.,30, No. 1, 79–104 (1952).Google Scholar
  3. 3.
    V. M. Poletskikh, “Locally compact groups with the inductivity condition for closed subgroups,” Sib. Mat. Zh.,14, No. 3, 624–635 (1973).Google Scholar
  4. 4.
    A. G. Kurosh, Group Theory, Chelsea Publ.Google Scholar
  5. 5.
    N. Ya. Vilenkin, “The theory of topological groups. II,” Usp. Mat. Nauk,5, No. 4, 19–73 (1950).Google Scholar
  6. 6.
    V. S. Charin, “Several classes of locally bicompact groups with the maximality condition for Abelian subgroups,” Sib. Mat. Zh.,5, No. 12, 438–458 (1964).Google Scholar
  7. 7.
    V. M. Glushkov, “Locally nilpotent locally bicompact groups,” Tr. Mosk. Mat. O-va,4, 291–332 (1955).Google Scholar
  8. 8.
    V. M. Poletskikh, “Layer compact nilpotent groups,” Sib. Mat. Zh.,16, No. 4, 799–807 (1975).Google Scholar
  9. 9.
    A. I. Mal'tsev, “Nilpotent torsion-free groups,” Izv. Akad. Nauk SSSR, Ser. Mat.,13, 201–212 (1949).Google Scholar
  10. 10.
    Z. I. Moskalenko, “Locally compact supersoluble groups,” Ukr. Mat. Zh.,24, No. 2, 238–247 (1973).Google Scholar
  11. 11.
    Yu. N. Mukhin and E. N. Starukhina, “Connected groups of finite rank,” Mat. Zap. Ural'sk. Inst.,8, No. 3, 94–100 (1972).Google Scholar
  12. 12.
    S. N. Chernikov, “Complete groups with increasing central series,” Mat. Sb.,18, 397–422 (1946).Google Scholar
  13. 13.
    V. S. Charin, “Groups of finite rank. I,” Ukr. Mat. Zh.,16, No. 2, 212–219 (1964).Google Scholar
  14. 14.
    P. Hall, “Nilpotent groups,” Matematika (Collection of translations),12, No. 1, 3–36 (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • V. M. Poletskikh
    • 1
  1. 1.Kiev State UniversityUSSR

Personalised recommendations