Advertisement

Ukrainian Mathematical Journal

, Volume 29, Issue 5, pp 437–442 | Cite as

Solutions of multidimensional nonlinear volterra operator equations

  • S. Atdaev
  • S. Ashirov
Article

Keywords

Operator Equation Volterra Operator Volterra Operator Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. N. Tikhonov, “On the functional equations of the Volterra type and their applications to certain problems of mathematical physics,” Byull. Mosk. Univ., Ser. A, No. 8, 1–25 (1938).Google Scholar
  2. 2.
    Ya. D. Mamedov, “On the theory of solutions of nonlinear operator equations of the Volterra type,” Sib. Mat. Zh.,5, No. 6, 1305–1316 (1964).Google Scholar
  3. 3.
    M. Kwapisz, “On the existence and uniqueness of solution and convergence of successive approximations for functional equations of the Volterra type in a Banach space,” in: Proceedings of the Seminar on the Theory of Differential Equations with Deviating Arguments [in Russian], Vol. 4, Universitet Druzhby Narodov, Moscow (1967), pp. 123–138.Google Scholar
  4. 4.
    Z. B. Tsalyuk, “On the convergence problem of successive approximations,” in: Proceedings of the Seminar on the Theory of Differential Equations with Deviating Arguments [in Russian], Vol. 7, Universitet Druzhby Narodov, Moscow (1969), pp. 69–74.Google Scholar
  5. 5.
    Ya. D. Mamedov and A. I. Perov, “On multidimensional integral equations and inequalities of the Volterra type,” Izv. Akad. Nauk Az. SSR, Ser. Fiz.-Tekh. Mat. Nauk, No. 1, 7–19 (1965).Google Scholar
  6. 6.
    S. Ashirov and S. Atdaev, “On a generalization of the Bellman inequality,” Izv. Akad. Nauk Turkmen. SSR, Ser. Fiz.-Tekh., Khim. Geol. Nauk, No. 3, 102–104 (1973).Google Scholar
  7. 7.
    S. Ashirov and S. Atdaev, “On an integral inequality,” in: Matematika [in Russian], Izd. Turkmen. Gos. Univ., Ashkhabad (1973), pp. 12–17.Google Scholar
  8. 8.
    B. Palczewski, “On the uniqueness of solutions and the convergence of successive approximations in the Darboux problem under the conditions of the Krasnosielski and Krein type,” Ann. Polon. Math.,14, No. 2, 183–190 (1964).Google Scholar
  9. 9.
    F. Guglielmino, “Sulla rizoluzione del problema di Darboux per l'equazione S=f(x,y, z),” Boll. Della Unione Math. Italia, No. 3, 308–318 (1958).Google Scholar
  10. 10.
    M. Kwapisz and J. Turo, “On the existence and uniqueness of solutions of Darboux problems for partial differential-functional equations,” Collog. Math.,29, 279–302 (1974).Google Scholar
  11. 11.
    J. S. W. Wong, “On the convergence of successive approximations in the Darboux problem,” Ann. Polon. Math.,17, No. 3, 329–336 (1966).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • S. Atdaev
    • 1
  • S. Ashirov
    • 1
  1. 1.Turkmanian State UniversityUSSR

Personalised recommendations