Ukrainian Mathematical Journal

, Volume 28, Issue 3, pp 329–332 | Cite as

Scattering problem for transport equations

  • V. G. Tarasov
Brief Communications


Transport Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    M. Sh. Birman, “On conditions of existence of wave operators,” Izv. Akad. Nauk SSSR, Ser. Mat.,27, No. 4 (1963).Google Scholar
  2. 2.
    T. Kato, Perturbation Theory for Linear Operators, Springer, New York (1966).Google Scholar
  3. 3.
    K. O. Friedrichs, Perturbation of Spectra in Hilbert Space, American Mathematical Society, Providence, R. I. (1965).Google Scholar
  4. 4.
    P. F. Lax and R. S. Phillips, Scattering Theory, Academic Press, New York (1967).Google Scholar
  5. 5.
    V. S. Vladimirov, “Mathematical problem of single-velocity theory of particle transport,” Trudy Matematicheskogo In-ta Akad. Nauk SSSR, Vol. 61 (1961).Google Scholar
  6. 6.
    G. I. Marchuk, Methods of Design of Nuclear Reactors [in Russian], Gosatomizdat, Moscow (1961).Google Scholar
  7. 7.
    K. M. Case and P. F. Zweifel, Linear Transport Theory, Addison-Wesley, Reading, Mass. (1967).Google Scholar
  8. 8.
    A. Ya. Povzner, “On expansion of arbitrary functions by eigenfunctions of the operatorΔu + cu,” Matem. Sb.,32 (74), No. 1 (1953).Google Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • V. G. Tarasov
    • 1
  1. 1.Institute of MathematicsAcademy of Sciences of the Ukrainian SSRUkraine

Personalised recommendations