Skip to main content
Log in

Species differences in adenosine metabolic sites in the heart

  • Papers
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

5′-Nucleotidase and purine nucleoside phosphorylase, two key enzymes in nucleoside metabolism, have been localized electronmicroscopically in left ventricular myocardium of the human, dog, pig, rabbit, guinea pig and rat. Ectonucleotidase activity was present in all species at the plasma membrane of pericytes. Reactive endothelial cells in the microcirculatory bed were restricted to those covering resistance arterioles. Cardiomyocytes were reactive only in the rat. Purine nucleoside phosphorylase was localized uniformly in the vascular endothelium of all species. The strongest activity was seen in the pericytes of guinea pig, rat and dog. Pericytes of rabbit and pig were virtually unreactive, whereas a minority of cells in human samples were positive. Cardiomyocytes were unreactive in all species. These variations in the distribution pattern of adenosine metabolic sites may have definite consequences for disposal and recovery of adenylates and their breakdown products in ischaemia and for the effects to be expected from interference with nucleoside transport inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • BECKER, B., REINHOLZ, N., OZCELIK, T., LEIPERT, B. & GERLACH, E. (1989) Uric acid as radical scavenger and antioxidant in the heart.Eur. J. Physiol. 415, 127–35.

    Google Scholar 

  • BERNE, R. M. (1980) The role of adenosine in the regulation of coronary blood flow.Circ. Res. 47, 807–13.

    PubMed  Google Scholar 

  • BERNE, R., RUBIO, R., DOBSON, J. & CURNISH, R. (1971) Adenosine and adenine nucleotides as possible mediators of cardiac and skeletal muscle blood flow regulation.Cir. Res. 28 (suppl. I) 115–9.

    Google Scholar 

  • BORGERS, M. & THONÉ, F. (1975) The inhibition of alkaline phosphatase by 1-p-bromotetramisole.Histochem. 44, 277–80.

    Google Scholar 

  • BORGERS, M. & VERHEYEN, A. (1985) Enzyme cytochemistry. InInternational Review of Cytology (edited byBourne, G. H. & Danielli, J. F.), Vol. 95, pp. 163–227. Orlando, FL: Academic Press.

    Google Scholar 

  • BORGERS, M., SCHAPER, J. & SCHAPER, W. (1971) Adenosine-producing sites in the mammalian heart: a cytochemical study.J. Mol. Cell. Cardiol. 3, 287–96.

    PubMed  Google Scholar 

  • BORGERS, M., SCHAPER, J. & SCHAPER, W. (1972) Nucleoside phosphorylase activity in blood vessels and formed elements of the blood of the dog.J. Histochem. Cytochem. 20, 1041–8.

    PubMed  Google Scholar 

  • CHECHIK, B. E., BAUMAL, R. & Sengupta, S. (1983) Localization and identity of adenosine deaminase-positive cells in tissues of the young rat and calf.Histochem. J. 15, 373–87.

    PubMed  Google Scholar 

  • FLAMENG, W., WOUTERS, L., SERGEANT, P., LEWI, P., BORGERS, M., Thoné, F. & Suy, R. (1984) Multivariate analysis of angiographic, histologic, and electrocardiographic data in patients with coronary heart disease.Circulation 70, 7–17.

    PubMed  Google Scholar 

  • GERLACH, E. & DEUTICKE, B. (1966) Vergleichende Untersuchungen über die Bildung von Adenosin in Myokard verschiedener Tierspecies bei Sauerstoffmangel.Klin. Wschr. 22, 1307–10.

    Google Scholar 

  • NEES, S. (1989) Coronary flow increases induced by adenosine and adenine nucleotides are mediated by the coronary endothelium: a new principle of the regulation of coronary flow.Eur. Heart J. 10, (suppl. F.) 28–35.

    Google Scholar 

  • NEES, S. & DENDORFER, A. (1990) Einfluß des koronaren Mikrogefäßsystems auf den Adeninnukleotidstoffwechsel und daraus abgeleitete Funktionen des Herzens.Internist 31, 617–24.

    PubMed  Google Scholar 

  • NEES, S., HERZOG, V., BECKER, B. F., BÖCK, M., DES ROSIERS, Ch. & GERLACH, E. (1985) The coronary endothelium: a highly active metabolic barrier for adenosine.Basic Res. Cardiol. 80, 515–29.

    PubMed  Google Scholar 

  • RUBIO, R. & BERNE, R. (1970) Sites of nucleoside in myocardial cells.Circulation 41–42 (suppl. III) 62.

    Google Scholar 

  • RUBIO, R., WIEDMEIER, T. & BERNE, R. (1972) Nucleoside phosphorylase: localization and role in the myocardial distribution of purines.Am. J. Physiol. 222, 550–5.

    PubMed  Google Scholar 

  • SCHRADER, W. & WEST, C. (1990) Localization of adenosine deaminase and adenosine deaminase complexing protein in rabbit heart.Circ. Res. 66, 754–62.

    PubMed  Google Scholar 

  • SPARKS, H. & BARDENHEUER, H. (1986) Regulation of adenosine formation by the heart.Circ. Res. 58, 193–201.

    PubMed  Google Scholar 

  • VAN BELLE, H., WYNANTS, J. & GOOSSENS, F. (1985) Formation and release of nucleosides in the ischemic myocardium. Is the guinea-pig the exception?Basic Res. Cardiol. 80, 653–60.

    PubMed  Google Scholar 

  • Van Belle, H., Goossens, F. & Wynants, J. (1987) Formation and release of purine catabolites during hypoperfusion, anoxia, and ischemia.Am. J. Physiol. H886-93.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borgers, M., Thoné, F. Species differences in adenosine metabolic sites in the heart. Histochem J 24, 445–452 (1992). https://doi.org/10.1007/BF01089106

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01089106

Keywords

Navigation