Skip to main content
Log in

Jump-type processes and their applications in quantum mechanics

  • Published:
Journal of Soviet Mathematics Aims and scope Submit manuscript

Abstract

A survey is presented of mathematical methods in the theory of the Feynman path integral. Principal attention is devoted to new results making it possible to represent the solution of the Cauchy problem for the Schrödinger equation and a quasilinear equation of Hartree type in the form of the mathematical expectation of functionals on jump-type Markov processes and to use Monte Carlo methods for solving these equations. A brief survey of results on complex Markov chains is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. A. L. Alimov, “On the connection between path integrals and differential equations,” Teor. Mat. Fiz.,11, No. 2, 182–189 (1972).

    Google Scholar 

  2. A. L. Alimov, “On the Hamiltonian form of the Feynman path integral,” Teor. Mat. Fiz.,20, No. 3, 302–307 (1974).

    Google Scholar 

  3. B. M. Barbashov, “Functional integrals in quantum electrodynamics,” Zh. Eksp. Teor. Fiz.,48, 607–621 (1965).

    Google Scholar 

  4. B. M. Barbashov and V. V. Nesterenko, “Approximate solutions in the model Lint=h2ψ2ϕ2 and equations on trajectories for Green's function,” Teor. Mat. Fiz.,19, No. 1, 47–58 (1974).

    Google Scholar 

  5. B. M. Barbashov and V. N. Pervushin, “The quasiclassical approximation in quantum field theory with a static nucleon,” Teor. Mat. Fiz.,3, 320–325 (1970).

    Google Scholar 

  6. I. A. Batalin and E. S. Fradkin, “The approximation of stationary phase in the functional method,” Preprint FIAN, No. 137 (1968).

  7. V. V. Belov and V. P. Maslov, “Perturbation theory of complex Markov chains,” Appendix to the book: V. V. Belov et al., Theory of Graphs [in Russian], Vysshaya Shkola, Moscow (1976), pp. 295–388.

    Google Scholar 

  8. F. A. Berezin, “On a representation of operators by means of functionals,” Tr. Mosk. Mat. Obshch.,17, 117–196 (1967).

    Google Scholar 

  9. F. A. Berezin, “Non-Wiener path integrals,” Teor. Mat. Fiz.,6, No. 2, 194–212 (1971).

    Google Scholar 

  10. D. I. Blokhintsev and B. M. Barbashov, “Application of functional integrals in quantum mechanics and field theory,” Usp. Fiz. Nauk,106, No. 4, 593–616 (1972).

    Google Scholar 

  11. N. N. Bogolyubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields, Wiley (1959).

  12. V. S. Buslaev, “Path integrals and the asymptotics of solutions of parabolic equations as t→0. Applications in diffraction,” in: Probl. Mat. Fiz., No. 2, Leningr. Univ., Leningrad (1967), pp. 85–107.

    Google Scholar 

  13. V. S. Vladimirov, “On the application of the Monte Carlo method for finding the smallest characteristic number and the corresponding eigenfunction of a linear integral equation,” Teor. Veroyatn. Ee Primen.,1, No. 1, 113–130 (1956).

    Google Scholar 

  14. V. S. Vladimirov, “Numerical solution of the kinetic equation for a sphere,” Vychisl. Mat., No. 3, 3–33 (1958).

    Google Scholar 

  15. V. S. Vladimirov, “On approximate evaluation of Wiener integrals,” Usp. Mat. Nauk,15, No. 4, 129–135 (1960).

    Google Scholar 

  16. V. S. Vladimirov, Equations of Mathematical Physics, Marcel-Dekker (1971).

  17. V. S. Vladimirov and I. M. Sobol', “Calculation of the smallest characteristic number of the Parseval equation by the Monte Carlo method,” Vychisl. Mat., No. 3, 130–137 (1958).

    Google Scholar 

  18. I. M. Gel'fand (Gelfand) and N. Ya. Vilenkin, Applications of Harmonic Analysis, Academic Press (1964).

  19. I. M. Gel'fand, S. M. Feinberg, A. S. Frolov, and N. N. Chentsov, “On the application of the method of random tests (the Monte Carlo method) to the solution of the kinetic equation,” Proc. 2nd. Int. Conf. on Peaceful Uses of Atomic Energy, 1958, [in Russian], Vol. 2, Nuclear Reactors and Nuclear Energy, Atomizdat, Moscow (1959), pp. 588–612.

    Google Scholar 

  20. I. M. Gel'fand, A. S. Frolov, and M. N. Chentsov, “ Evaluation of path integrals by the Monte Carlo method,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 5, 32–45 (1958).

    Google Scholar 

  21. I. M. Gel'fand and M. N. Chentsov, “Numerical evaluation of path integrals,” Zh. Eksp. Teor. Fiz.,31, No. 6, 1106–1107 (1956).

    Google Scholar 

  22. I. M. Gel'fand and A. M. Yaglom, “Integration in function spaces and its application in quantum physics,” Usp. Mat. Nauk,12, No. 1, 3–52 (1957).

    Google Scholar 

  23. I. N. Gikhman and A. V. Skorokhod, Theory of Stochastic Processes, Springer-Verlag (1974).

  24. I. N. Gikhman and A. V. Skorokhod, Theory of Stochastic Processes, Springer-Verlag (1975).

  25. Yu. L. Daletskii, “Path integrals related to operator evolution equations,” Usp. Mat. Nauk,17, No. 5, 3–115 (1962).

    Google Scholar 

  26. Yu. L. Daletskii, “Integration in function spaces,” in: Mat. Anal., 1966 (Itogi Nauki. VINITI AN SSSR), Moscow (1967), pp. 83–124.

  27. Yu. L. Daletskii and V. V. Stremskii, “Feynman integrals for the Schrödinger equation in function spaces,” Usp. Mat. Nauk,24, No. 1, 191–192 (1969).

    Google Scholar 

  28. Yu. L. Daletskii and S. V. Fomin, “Generalized measures in function spaces,” Teor. Veroyatn. Ee Primen.,10, No. 2, 329–343 (1965).

    Google Scholar 

  29. Yu. L. Daletskii and S. V. Fomin, “Generalized measures in Hilbert space and the direct equation of Kolmogorov,” Dokl. Akad. Nauk SSSR,205, No. 4, 759–762 (1972).

    Google Scholar 

  30. M. A. Evgrafov, “On a formula for the representation of the fundamental solution of a differential equation by a path integral,” Dokl. Akad. Nauk SSSR,191, No. 5, 979–982 (1970).

    Google Scholar 

  31. A. M. Evseev, “Computation of the basic energy level of helium by means of integrals over trajectories,” Dokl. Akad. Nauk SSSR,189, No. 6, 1197–1199 (1969).

    Google Scholar 

  32. S. M. Ermakov, The Monte Carlo Method and Related Questions [in Russian], 2nd ed., Nauka, Moscow (1975).

    Google Scholar 

  33. A. T. Zaplitnaya, “Difference schemes and functional integrals related to some nonlinear equations of parabolic type,” Doctoral Dissertation, Academy of Sciences of the Ukrainian SSR, Kiev (1967).

    Google Scholar 

  34. M. V. Karasev, “A function of continual families of ordered operators,” Tr. Mosk. Inst. Electron. Mashinostr., No. 49, 64–95 (1975).

    Google Scholar 

  35. M. V. Karasev, “On ordered quantization,” Mosk. Inst. Elektron. Mashinostr., Moscow (1974).

    Google Scholar 

  36. M. V. Karasev, “The integral over trajectories and its quasiclassical asymptotics on a Lie group,” Teor. Mat. Fiz.,31, No. 1, 41–47 (1977).

    Google Scholar 

  37. M. V. Karasev and M. V. Mosalova, “Infinite products and T-produets of exponentials,” Teor. Mat. Fiz.,28, No. 2, 189–200 (1976).

    Google Scholar 

  38. T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag (1966).

  39. V. I. Klyatskin, Statistical Description of Dynamic Systems with Fluctuating Parameters [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  40. V. I. Klyatskin and V. I. Tatarskii, “On the approximation of the parabolic equation in problems of wave propagation in a medium with random inhomogeneities,” Zh. Eksp. Teor. Fiz.,58, No. 2, 624–634 (1970).

    Google Scholar 

  41. A. N. Kolmogorov, Foundations of the Theory of Probability, Chelsea Publ.

  42. V. F. Kolchin, “Branching processes, random trees, and a generalized scheme of allocating particles,” Mat. Zametki,21, No. 5, 691–705 (1977).

    Google Scholar 

  43. V. Yu. Krylov, “On some properties of the distribution corresponding to the equation ∂u/∂t=(−1)q+1. (∂2qu/∂x2q),” Dokl. Akad. Nauk SSSR,132, No. 6, 1254–1257 (1960).

    Google Scholar 

  44. R. Sh. Liptser and A. N. Shiryaev, “On the absolute continuity of measures corresponding to processes of diffusion type relative to the Wiener measure,” Izv. Akad. Nauk SSSR, Ser. Mat.,36, No. 4, 847–889 (1972).

    Google Scholar 

  45. E. V. Maikov, “On the inequivalence of two definitions of a path integral,” Nauchn. Dokl. Vyssh. Shkoly. Fiz.-Mat. Nauk, No. 3, 85–87 (1958).

    Google Scholar 

  46. E. V. Maikov, “τ-Smooth functionals and integration in function spaces,” Usp. Mat. Nauk,18, No. 3, 243–244 (1963).

    Google Scholar 

  47. E. V. Maikov, “τ-Smooth functionals,” Tr. Mosk. Mat. Obshch.,20, 9–42 (1969).

    Google Scholar 

  48. V. P. Maslov, “Definition of complex Markov chains and the derivation of the Schrödinger equation,” Dokl. Akad. Nauk SSSR,192, No. 2, 272–275 (1970).

    Google Scholar 

  49. V. P. Maslov, “On the method of stationary phase for a Feynman path integral,” Teor. Mat. Fiz.,2, No. 1, 30–35 (1970).

    Google Scholar 

  50. V. P. Maslov, Complex Markov Chains and the Feynman Path Integral for Nonlinear Equations [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  51. V. P. Maslov and A. M. Chebotarev, “Representation of the solution of an equation of Hartree type as a T-mapping,” Dokl. Akad. Nauk SSSR,222, No. 5, 1037–1040 (1975).

    Google Scholar 

  52. V. P. Maslov and A. M. Chebotarev, “Definition of the Feynman path integral in the p-representation,” Dokl. Akad. Nauk SSSR,229, No. 1, 37–38 (1976).

    Google Scholar 

  53. V. P. Maslov and A. M. Chebotarev, “The generalized measure in the Feynman path integral,” Teor. Mat. Fiz.,28, No. 3, 291–307 (1976).

    Google Scholar 

  54. V. P. Maslov and I. A. Shishmarev, “On the T-product of hypoelliptic operators,” in: Sovrem. Probl. Mat., Vol. 8 (Itogi Nauki i Tekhn. VINITI AN SSSR), Moscow (1977), pp. 137–197.

    Google Scholar 

  55. J. Neveu, Mathematical Foundations of the Calculus of Probability, Holden-Day (1965).

  56. E. A. Novikov, “Functionals and the method of random forces in the theory of turbulence,” Zh. Eksp. Teor. Fiz.,47, No. 5, 1919–1926 (1964).

    Google Scholar 

  57. S. E. Pitovranov, “Investigation of dynamic systems perturbed by random noise by means of Wiener path integrals,” Tr. Mosk. Inst. Elektron. Mashinostr., No. 36, 243–249 (1973).

    Google Scholar 

  58. Yu. V. Prokhorov, “Convergence of stochastic processes and limit theorems of probability theory,” Teor. Veroyatn. Ee Primen.,1, No. 2, 177–238 (1956).

    Google Scholar 

  59. Yu. V. Prokhorov and Yu. A. Rozanov, Probability Theory: Basic Concepts, Limit Theorems, Random Processes, Springer-Verlag (1969).

  60. K. A. Pupkov, V. I. Kapalin, and A. S. Yushchenko, Functional Series in the Theory of Nonlinear Systems [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  61. V. L. Roitburd, “On the representation of the solution of the Cauchy problem as a path integral,” Dokl. Akad. Nauk SSSR,201, No. 3, 545–547 (1971).

    Google Scholar 

  62. A. A. Samarskii and A. V. Gulin, Stability of Difference Schemes [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  63. B. A. Sevast'yanov, Branching Processes [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  64. A. V. Skorokhod, Integration in Hilbert Space, Springer-Verlag (1974).

  65. A. A. Slavnov, “The path integral in perturbation theory,” Teor. Mat. Fiz.,22, No. 2 (1975).

  66. I. M. Sobol', Numerical Monte Carlo Methods [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  67. L. D. Faddeev, “The Feynman integral for singular Lagrangians,” Teor. Mat. Fiz.,1, No. 1, 3–18 (1969).

    Google Scholar 

  68. L. D. Fadeev, “Simplectic structure and quantization of the Einstein gravitational theory,” in: International Congress of Mathematicians, Nice, 1970 [in Russian], Nauka, Moscow (1972), pp. 328–333.

    Google Scholar 

  69. R. Feynman, “The space-time approach in quantum mechanics,” in: Causality Questions in Quantum Mechanics [Russian translation], IL, Moscow (1955), pp. 167–207.

    Google Scholar 

  70. R. Feynman, “An operator calculus having application in quantum electrodynamics,” in: Problems of Modern Physics, No. 3 (1955), pp. 37–79.

    Google Scholar 

  71. R. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill (1965).

  72. S. V. Fomin, “On the incorporation of the Wiener integral in the general scheme of the Lebesgue integral,” Nauchn. Dokl. Vyssh. Shkoly. Fiz.-Mat. Nauk, No. 2, 83–85 (1958).

    Google Scholar 

  73. S. V. Fomin, “Generalized functions of an infinite number of variables and their Fourier transforms,” Usp. Mat. Nauk,23, No. 2, 215–216 (1968).

    Google Scholar 

  74. S. V. Fomin, “The method of Fourier transforms for anequation in functional derivatives,” Dokl. Akad. Nauk SSSR,181, No. 4, 812–814 (1968).

    Google Scholar 

  75. S. V. Fomin, “Differentiate measures in linear spaces,” Usp. Mat. Nauk,23, No. 1, 221–222 (1968).

    Google Scholar 

  76. S. V. Fomin, “On some new problems and results in nonlinear functional analysis,” Vestn. Mosk. Univ. Mat., Mekh., No. 2, 57–65 (1970).

    Google Scholar 

  77. E. S. Fradkin, “On the functional method in quantum statistics and many-body theory,” in: Problems in Theoretical Physics [in Russian], Nauka, Moscow (1969), pp. 386–413.

    Google Scholar 

  78. M. I. Freidlin, “On the ‘global’ existence of smooth solutions of degenerate quasilinear equations,” Mat. Sb.,78, No. 3, 332–348 (1969).

    Google Scholar 

  79. M. I. Freidlin, “Quasilinear parabolic equations and measures in function space,” Funkts. Anal. Prilozhen.,1, No. 3, 74–82 (1967).

    Google Scholar 

  80. S. G. Krein (editor), Functional Analysis [in Russian], 2nd ed., Revised, Nauka, Moscow (1972).

    Google Scholar 

  81. E. Hille and R. S. Phillips, Functional Analysis and Semigroups, Amer. Math. Soc. (1974).

  82. A. M. Chebotarev, “T-mappings and path integrals,” Dokl. Akad. Nauk SSSR,225, No. 4, 763–766 (1975).

    Google Scholar 

  83. A. M. Chebotarev, “On the T-mapping connected with the equation of Hartree type,” Mat. Zametki,21, No. 5, 605–614 (1977).

    Google Scholar 

  84. N. N. Chentsov, “On quadrature formulas for functions of an infinite number of variables,” Zh. Vychisl. Mat. Mat. Fiz.,1, No. 3, 418–424 (1961).

    Google Scholar 

  85. N. N. Chentsov, “Pseudorandom numbers for modeling Markov chains,” Zh. Vychisl. Mat. Mat. Fiz.,7, No. 3, 632–643 (1967).

    Google Scholar 

  86. V. M. Chetverikov, “Green's function of a spatial oscillator in a variable homogeneous electromagnetic field,” Izv. Vyssh. Uchebn. Zaved., Fiz., No. 3, 17–22 (1975).

    Google Scholar 

  87. V. M. Chetverikov, “On the path integral in the case of nonadditive action,” Teor. Mat. Fiz.,24, No. 2, 211–218 (1975).

    Google Scholar 

  88. V. M. Chetverikov, “The averaged Green function for the Schrödinger equation with a random potential,” Teor. Mat. Fiz.,28, No. 3, 359–370 (1976).

    Google Scholar 

  89. G. E. Shilov and Fan Dyk Tin', The Integral, Measure, and Derivative on Linear Spaces [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  90. G. E. Shilov and V. L. Gurevich, Integral, Measure, and Derivative [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  91. L. A. Yankovich, Approximate Evaluation of Path Integrals with Respect to Gaussian Measures [in Russian], Nauk. i Tekhn., Minsk (1976).

    Google Scholar 

  92. S. Albeverio and P. Hoegh-Krohn, “Mathematical theory of Feynman path integrals,” Lect. Notes Math., 523 (1976).

  93. S. Albeverio and P. Hoegh-Krohn, “Oscillatory integrals and the method of stationary phase in infinitely many dimensions with applications to the classical limit of quantum mechanics. I,” Invent. Math.,40, No. 1, 59–106 (1977).

    Google Scholar 

  94. D. G. Babbitt, “A summation procedure for certain Feynman integrals,” Doct. Diss. Univ. Mich., 1962, Dissert. Abstr.,23, No. 9, 3392–3393 (1963).

    Google Scholar 

  95. S. G. Brush, “Functional integrals and statistical physics,” Rev. Mod. Phys.,33, No. 1, 79–92 (1961).

    Google Scholar 

  96. D. Buchholz and J. Tarski, “Integrable cylinder functionals for an integral of Feynman type,” Ann. Inst. H. Poincaré,A24, No. 3, 323–328 (1976).

    Google Scholar 

  97. R. H. Cameron, “The ILSTOW and Feynman integrals,” J. Anal. Math.,10, 287–361 (1962–1963).

    Google Scholar 

  98. R. H. Cameron, “A family of integrals serving to connect the Wiener and Feynman integrals,” J. Math. Phys.,39, No. 2, 126–140 (1960).

    Google Scholar 

  99. R. H. Cameron, “Approximation to certain Feynman integrals,” J. Anal. Math.,21, 337–371 (1968).

    Google Scholar 

  100. R. H. Cameron and D. A. Storvick, “An operator valued function space integral and a related integral equation,” J. Math. Mech.,18, No. 6, 517–552 (1968).

    Google Scholar 

  101. R. H. Cameron and D. A. Storvick, “An integral equation related to the Schrödinger equation with an application to integration in function space,” Problems in Analysis, Princeton Univ. Press, Princeton (1970), pp. 175–193.

    Google Scholar 

  102. R. H. Cameron and D. A. Storvick, “An operator-valued function-space integral applied to integrals of class L1,” Proc. London Math. Soc.,27, No. 2, 345–360 (1973).

    Google Scholar 

  103. R. H. Cameron and D. A. Storvick, “An operator-valued function-space integral applied to integrals of class L2,” J. Math. Anal. Appl.,42, No. 2, 330–372 (1973).

    Google Scholar 

  104. R. H. Cameron and D. A. Storvick, “An operator-valued function-space integral applied to multiple integrals of functions of class L1,” Nagoya Math. J.,51, 91–122 (1973).

    Google Scholar 

  105. W. B. Campbell, P. Finkler, C. E. Jones, and M. N. Micheloff, “Path integrals with arbitrary generators and the eigenfunction problems,” Ann. Phys.,96, No. 2, 286–302 (1976).

    Google Scholar 

  106. P. Choquard, “Traitment semiclassique des forces générales dans la representation de Feynman,” Helv. Phys. Acta,28, No. 2–3, 89–157 (1955).

    Google Scholar 

  107. L. Cohen, “Hamiltonian operator via Feynman path integrals,” J. Math. Phys.,4, No. 11, 3296–3297 (1960).

    Google Scholar 

  108. R. F. Dashen, B. Hasslacher, and A. Neven, “Nonperturbation methods and extended hadron models in field theory. 1. Semiclassical functional methods,” Phys. Rev.,D10, No. 12, 4114–4129 (1974).

    Google Scholar 

  109. H. Davis, “Hamiltonian approach to the method of summation over Feynman historia,” Proc. Cambr. Phil. Soc.,59, 147–155 (1963).

    Google Scholar 

  110. E. S. Fradkin, V. Esposito, and S. Termini, “Functional techniques in physics,” Riv. Nuovo Cimento,2, 498–560 (1970).

    Google Scholar 

  111. K. O. Friedrichs and N. W. Shapiro, “Integration over Hilbert space and outer extensions,” Proc. Nat. Acad. Sci. USA,43, No. 4, 336–338 (1957).

    Google Scholar 

  112. W. Garczyński, “Stochastic pseudoprocesses and quantum theory,” Acta Univ. Wratisl., No. 368, 242–325 (1976).

    Google Scholar 

  113. G. Gutzwiller, “Phase-integral approximation in momentum space and the bound states of an atom,” J. Math. Phys.,8, No. 10, 1979–2000 (1967).

    Google Scholar 

  114. K. Ito, “Wiener integral and Feynman integral,” Proc. 4th Berkeley Sympos. Math. Statist. and Probability, Vol. 2, 1960, Berkeley-Los Angeles, Univ. Calif. Press (1961), pp. 227–238.

    Google Scholar 

  115. K. Ito, “Generalized uniform complex measures in the Hilbertian metric space and their application to the Feynman integral,” Proc. 5th Berkeley Sympos. Math. Statist. and Probability, Vol. 2, Part 1, 1965–1966, Berkeley-Los Angeles (1967), pp. 145–161.

    Google Scholar 

  116. B. Jessen, “The theory of integration in a space of an infinite number of dimensions,” Acta Math.,63, Nos. 1–2, 249 (1934).

    Google Scholar 

  117. G. W. Johnson and D. L. Skoug, “Feynman integrals of nonfactorable finite-dimensional functionals,” Pac. J. Math.,45, No. 1, 257–267 (1973).

    Google Scholar 

  118. G. W. Johnson and D. L. Skoug, “A Banach algebra of Feynman integrable functionals with application to an integral equation formally equivalent to Schrödinger's equation,” J. Funct. Anal.,12, No. 2, 129–152 (1973).

    Google Scholar 

  119. G. W. Johnson and D. L. Skoug, “The Cameron-Storvick function space integral: the L1-theory,” J. Mat. Anal. Appl.,50, No. 3, 647–677 (1975).

    Google Scholar 

  120. G. W. Johnson and D. L. Skoug, “Cameron and Storvick's function-space integral for certain Banach spaces of functionals,” J. London Math. Soc.,9, No. 1, 103–117 (1974).

    Google Scholar 

  121. T. Kato, “Quasilinear equations of evolution with application to partial differential equations,” Lect. Notes Math.,448, 25–70 (1975).

    Google Scholar 

  122. J. B. Keller and D. W. McLaughlin, “The Feynman integral,” Am. Math. Mon.,82, No. 5, 451–465 (1975).

    Google Scholar 

  123. P. Kree, “Examples d'utilisation de la théorie des distributions et des fonctionneles linéaires sur les espaces de Hilbert,” C. R. Acad. Sci.,A278, No. 5, 335–337 (1974).

    Google Scholar 

  124. P. Kristensen, L. Mejibo, and E. T. Poulsen, “On a Fourier transform in infinitely many dimensions,” Lect. Notes Math.,31, 187–196 (1967).

    Google Scholar 

  125. P. Levy, Théorie de l'Addition des Variables Aléatoires, Gauthier-Villars, Paris (1954).

    Google Scholar 

  126. V. P. Maslov, Operational Methods [Russian translation], Mir, Moscow (1976).

    Google Scholar 

  127. V. P. Maslov and A. M. Chebotarev, “On the Monte Carlo calculation of Feynman path integrals in the p-representation,” Proc. 2nd IMACS Intern. Symp. on Computer Methods for Partial Differential Equations, June 22–24, Lehigh Univ., Bethlehem, Pa. (USA) (1977).

    Google Scholar 

  128. D. W. McLaughlin, “Path integrals, asymptotics, and singular perturbations,” J. Math. Phys.,13, No. 5, 784–796 (1972).

    Google Scholar 

  129. D. W. McLaughlin, “Complex time, contour independent path integrals and barrier penetration,” J. Math. Phys.,13, No. 8, 1099–1108 (1972).

    Google Scholar 

  130. M. Mizrahi, “The Weyl correspondence and path integrals,” J. Math. Phys.,16, No. 11, 2201–2206 (1975).

    Google Scholar 

  131. E. W. Montroll, “Markoff chains, Wiener integrals and quantum theory,” Commun. Pure Appl. Math.,5, 415–453 (1952).

    Google Scholar 

  132. C. Morette de Witte, “L'intégral fonctionnel de Feynman. Une introduction,” Ann. Inst. H. Poincaré, Ser. A, 153–206 (1969).

  133. C. Morette de Witte, “Feynman path integrals. Definition without limiting procedure,” Commun. Math. Phys.,28, 47–67 (1972).

    Google Scholar 

  134. C. Morette de Witte, “Feynman path integrals,” Commun. Math. Phys.,37, No. 1, 63–81 (1974).

    Google Scholar 

  135. C. Morette de Witte, “Path integrals in Riemannian manifolds,” Lect. Notes Phys.,39, 535–542 (1975).

    Google Scholar 

  136. E. Nelson, “Feynman integrals and the Schrödinger equation,” J. Math. Phys.,5, No. 3, 332–343 (1964).

    Google Scholar 

  137. Pao-Liu Chow, “Applications of function space integrals to problems in wave propagation in random media,” J. Math. Phys.,13, No. 8, 1224–1236 (1972).

    Google Scholar 

  138. L. S. Schulman, “A path integral for spin,” Phys. Rev.,176, 1558–1569 (1968).

    Google Scholar 

  139. J. Tarski, “Definitions and selected applications of Feynman-type integrals,” in: Functional Integration and Applications, Oxford Univ. Press, London (1975) (Proceedings of the International Conference held at Cumberland Lodge, Windsor Great Park, London, April, 1974).

    Google Scholar 

  140. J. Tarski, “Recent results in Feynman-type integrals,” Summer Course in Complex Analysis, May 25–Aug. 8, 1975, Internat. Centre Theor. Phys. (1975).

  141. F. J. Testa, “Quantum operator ordering and the Feynman formulation,” J. Math. Phys.,12, No. 8, 1471–1474 (1971).

    Google Scholar 

Download references

Authors

Additional information

Translated from Itogi Nauki i Tekhniki. Teoriya Veroyatnostei, Matematicheskaya Statistika, Teoreticheskaya Kibernetika, Vol. 15, pp. 5–78, 1978.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maslov, V.P., Chebotarev, A.M. Jump-type processes and their applications in quantum mechanics. J Math Sci 13, 315–358 (1980). https://doi.org/10.1007/BF01088985

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01088985

Keywords

Navigation