Skip to main content
Log in

The Landau—Lifshits equation and quadrisecants of Prym varieties

Functional Analysis and Its Applications Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. D. Mumford, Tata Lectures on Theta, Birkhäuser, Boston—Basel—Stuttgart, Vol. 1 (1983); Vol. 2 (1984).

  2. I. A. Taimanov, Mat. Zametki,50, No. 1, 98–107 (1991).

    Google Scholar 

  3. E. K. Sklyanin, Preprint LOMI, Leningrad, E-3-79 (1979).

  4. M. M. Bogdan and A. S. Kovalev, Pis'ma Zh. Tekh. Fiz.,31, 424–427 (1980).

    Google Scholar 

  5. R. Hirota, J. Phys. Soc. Jpn.,51, 323–331 (1982).

    Google Scholar 

  6. E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, J. Phys. A,16, 221–236 (1983).

    Google Scholar 

  7. A. I. Bobenko, Funkts. Anal. Prilozhen.,19, No. 1, 6–19 (1985).

    Google Scholar 

  8. A. Beauville and O. Debarre, Ann. Scuola Norm. Sup. Pisa,14, 613–623 (1987).

    Google Scholar 

Download references

Authors

Additional information

Institute of Mathematics, Siberian Division of Russian Academy of Sciences, Novosibirsk. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 27, No. 3, pp. 90–92, July–September, 1993.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taimanov, I.A. The Landau—Lifshits equation and quadrisecants of Prym varieties. Funct Anal Its Appl 27, 222–224 (1993). https://doi.org/10.1007/BF01087544

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01087544

Keywords

Navigation