Skip to main content
Log in

Representation of the Zamolodchikov-Faddeev algebra

  • Published:
Journal of Soviet Mathematics Aims and scope Submit manuscript

Abstract

For quantum completely integrable models with an infinite number of degrees of freedom, such as vector nonlinear Schrödinger equations on the line, isotropic and anisotropic generalized Heisenberg ferromagnets, operators are constructed which satisfy the permutation relations of Zamolodchikov's algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. P. P. Kulish, “Factorization of classical and quantum S-matrices and conservation laws,” Teor. Mat. Fiz.,26, No. 2, 198–205 (1976).

    Google Scholar 

  2. A. B. Zamolodchikov and A1. B. Zamolodchikov, “Two-dimensional factorizable S-matrices as exact solutions of some quantum field theory models,” Ann. Phys.,120, 253–291 (1979).

    Google Scholar 

  3. L. D. Faddeev, “Quantum completely integrable models in field theory,” in: Problems of Quantum Field Theory, R2-12462, Dubna (1979), pp. 249–299. L. D. Faddeev, “Quantum completely integrable models in field theory,” in: Contemporary Mathematical Physics, Vol. 1C (1980), pp. 107–155. L. D. Faddeev, “Two-dimensional integrable models in quantum field theory,” Preprint, Stockholm, 1–15 (1980).

  4. P. P. Kulish, “Generalized Bethe's Ansatz and the quantum method of the inverse problem,” Preprint Leningr. Otd. Mat. Inst. R-3-79, 1–16 (1979). P. P. Kulish, “Multicomponent nonlinear Schrödinger equation with graduation,” Dokl. Akad. Nauk SSSR,255, No. 2, 323–326 (1980).

  5. P. P. Kulish and N. Yu. Reshetikhin, “Generalized Heisenberg ferromagnet and the Gross-Neveu model,” Zh. Eksp. Teor. Fiz.,80, No. 1, 214–228 (1981).

    Google Scholar 

  6. P. P. Kulish and E. K. Sklyanin, “On solutions of the Yang-Baxter equation,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst.,95, 129–160 (1980).

    Google Scholar 

  7. L. A. Takhtadzhyan, “Quantum method of the inverse problem and the matrix Bethe Ansatz in algebraic form,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst.,101, 158–183 (1981).

    Google Scholar 

  8. P. P. Kulish and E. K. Salyanin, “0(N)-invariant nonlinear Schrödinger equation. A new completely integrable system,” Phys. Lett.,83A, No. 4, 111–113 (1981).

    Google Scholar 

  9. D. B. Creamer, H. B. Thacker, and D. Wilkinson, “Gelfand-Levitan method for operator fields,” Phys. Rev.,D21, 1523–1533 (1980).

    Google Scholar 

  10. H. C. Ottinger, “Correlation functions for n species of one-dimensional impenetrable bosons,” Preprint Univ. Freiburg, THEP 80/8, 1–11 (1980).

    Google Scholar 

  11. D. B. Creamer, H. B. Thacker, and D. Wilkinson, “Some exact results for the two point function of an integrable quantum field theory,” Preprint FERMILAB-Pub-81/23-THY, 1–12 (1981).

Download references

Authors

Additional information

Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR, Vol. 109, pp. 83–92, 1981.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulish, P.P. Representation of the Zamolodchikov-Faddeev algebra. J Math Sci 24, 208–215 (1984). https://doi.org/10.1007/BF01087242

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01087242

Keywords

Navigation