Ukrainian Mathematical Journal

, Volume 19, Issue 3, pp 245–251 | Cite as

Vibrations of systems with distributed parameters under the influence of random disturbances

  • S. A. Vasilishin
  • V. G. Kolomiets


Random Disturbance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    I. I. Gikhman, Differential Equations with Random Functions [in Russian], Zimnyaya School of Probability Theory and Mathematical Statistics, Izd-vo Naukova Dumka, Kiev (1964), pp. 41–85.Google Scholar
  2. 2.
    R. L. Stratonovich, Selected Problems in Fluctuation Theory in Radio Engineering [in Russian], Izd-vo Sov. Radio, Moscow (1961).Google Scholar
  3. 3.
    R. Z. Khas'minskii, The Operation of Self-Vibrating Systems under the Action of Weak Noise, PMM,27, No. 4, 683–688 (1963).Google Scholar
  4. 4.
    V. G. Kolomiets, Random Vibrations of Quasilinear System, Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, Klasse für Mathematik, Physik, und Technik, No. 1, 61–65 (1965).Google Scholar
  5. 5.
    T. K. Koi, The Reaction of a Class of Oscillators to Stochastic Disturbances [Russian translation], Collection of Translations, Mekhanika, 3–91 (1965), pp. 17–27.Google Scholar
  6. 6.
    V. M. Kuz'ma, The Dynamic Stability of Elastic Structures in Free Flight Subjected to the Action of Randomly Varying Following Forces, in: Dynamics of Elastic Structures under the Conditions of Free Flight [in Russian], Izd-vo, Naukova Dumka, Kiev (1965), pp. 139–159.Google Scholar
  7. 7.
    T. K. Caughey, Response of a Nonlinear String to Random Excitation, J. Appl. Mech.,26, 341–344 (1959).Google Scholar
  8. 8.
    T. K. Caughey, Random Excitation of a Loaded Nonlinear String, J. Appl. Mech.,27, 575–578 (1960).Google Scholar
  9. 9.
    L. S. Pontryagin, A. A. Andronov, and A. A. Vitt, Statistical Considerations in Connection with Dynamic Systems; Collected Works of A. A. Andronov [in Russian], Izd-vo Akad.Nauk SSSR, Moscow (1956), pp. 142–160.Google Scholar
  10. 10.
    N. N. Bogolyubov and Yu. A. Mitropol'skii, Asymptotic Methods in the Theory of Nonlinear Vibrations [in Russian], Izd-vo Nauka, Moscow (1963).Google Scholar
  11. 11.
    Yu. A. Mitropol'skii, Lectures on the Averaging Method in Nonlinear Mechanics [in Russian], Izd-vo Naukova Dumka, Kiev (1966).Google Scholar
  12. 12.
    Yu. O. Mitropol'skii and B. I. Moseenkov, Investigation of Vibrations in Systems with Distributed Parameters [in Ukrainian], Vid-vo KDU (1961).Google Scholar
  13. 13.
    B. I. Moseenkov, The Determination of Formal Solutions for a Quasi-Wave Equation with Nonlinear Boundary Conditions and the Possibility of Applying Krylov-Bogolyubov Asymptotic Methods in the Investigation of Single-Frequency Vibrations [in Russian], Izd-vo Naukova Dumka, Kiev (1964).Google Scholar
  14. 14.
    B. I. Moseenkov, Approximate Asymptotic Solutions of a One-Dimensional Nonlinear Boundary-Value Problem Encountered in the Investigation of Nonstationary Vibrations, in: Mathematical Physics [in Russian], Izd-vo Naukova Dumka, Kiev (1966), pp. 77–94.Google Scholar
  15. 15.
    Z. F. Sirchenko, An Application of the Averaging Method in the Solution of Partial Differential Equations, Ukrainsk. Matem. Zh.,14, No. 2 (1962).Google Scholar
  16. 16.
    S. A. Vasilishin, An Application of the Averaging Method in the Solution of Mixed Problems for Nonlinear Hyperbolic Equations, Ukrainsk. Matem. Zh.,18, No. 2 (1966).Google Scholar
  17. 17.
    R. Z. Khas'minskii, The Averaging Method for Parabolic and Elliptic Differential Equations and Markov Processes with Low Diffusion, Teoriya Veroyatnostei i ee Primeneniya,8, No. 1, 3–25 (1963).Google Scholar
  18. 18.
    N. N. Bogolyubov, Statistical Methods in Mathematical Physics [in Russian], Izd-vo Akad. Nauk UkrSSR, Kiev (1945).Google Scholar

Copyright information

© Consultants Bureau 1969

Authors and Affiliations

  • S. A. Vasilishin
    • 1
  • V. G. Kolomiets
    • 1
  1. 1.Mathematics InstituteAcademy of Sciences of the UkrSSRUSSR

Personalised recommendations