Ukrainian Mathematical Journal

, Volume 19, Issue 2, pp 152–158 | Cite as

Approximation of functions continuous on Jordan arcs

  • L. I. Kolesnik


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    S. Ya. Al'per, Some Problems in the Approximation of Functions of a Complex Variable by Polynomials [in Russian], Doctoral Dissertation, Rostov-on-Don (1964).Google Scholar
  2. 2.
    V. K. Dzyadyk, “On S. M. Nikol'skii's problem in the complex domain,” Izv. Akad. Nauk SSSR, Ser. Matem.,23, No. 5 (1959).Google Scholar
  3. 3.
    V. K. Dzyadyk, “The approximation of continuous functions in closed domains with corners and S. M. Nikol'skii's problem, ” I. Izv. Akad. Nauk SSSR, Ser. Matem.,26, No. 6 (1962).Google Scholar
  4. 4.
    V. K. Dzyadyk, “On the approximation of continuous functions,” II, Izv. Akad. Nauk. SSSR, Ser. Matem.,27, No. 5 (1963).Google Scholar
  5. 5.
    S. N. Mergelyan, “Uniform approximation of functions of a complex variable,” Uspekhi Matem. Nauk,7, No. 2 (1952).Google Scholar
  6. 6.
    N. I. Muskhelishvili, Singular Integral Equations [in Russian], Fizmatgiz, Moscow (1962).Google Scholar
  7. 7.
    N. A. Lebedev, Vestnik Leningradskogo Universiteta, No. 13 (1963).Google Scholar
  8. 8.
    L. Magnaradze, “A generalization of the Plemelj-Privalov theorem,” Soobshch. Akad. Nauk Gruz. SSR,8, No. 8 (1947).Google Scholar

Copyright information

© Consultants Bureau 1968

Authors and Affiliations

  • L. I. Kolesnik
    • 1
  1. 1.Kiev

Personalised recommendations