Ukrainian Mathematical Journal

, Volume 19, Issue 2, pp 152–158 | Cite as

Approximation of functions continuous on Jordan arcs

  • L. I. Kolesnik
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    S. Ya. Al'per, Some Problems in the Approximation of Functions of a Complex Variable by Polynomials [in Russian], Doctoral Dissertation, Rostov-on-Don (1964).Google Scholar
  2. 2.
    V. K. Dzyadyk, “On S. M. Nikol'skii's problem in the complex domain,” Izv. Akad. Nauk SSSR, Ser. Matem.,23, No. 5 (1959).Google Scholar
  3. 3.
    V. K. Dzyadyk, “The approximation of continuous functions in closed domains with corners and S. M. Nikol'skii's problem, ” I. Izv. Akad. Nauk SSSR, Ser. Matem.,26, No. 6 (1962).Google Scholar
  4. 4.
    V. K. Dzyadyk, “On the approximation of continuous functions,” II, Izv. Akad. Nauk. SSSR, Ser. Matem.,27, No. 5 (1963).Google Scholar
  5. 5.
    S. N. Mergelyan, “Uniform approximation of functions of a complex variable,” Uspekhi Matem. Nauk,7, No. 2 (1952).Google Scholar
  6. 6.
    N. I. Muskhelishvili, Singular Integral Equations [in Russian], Fizmatgiz, Moscow (1962).Google Scholar
  7. 7.
    N. A. Lebedev, Vestnik Leningradskogo Universiteta, No. 13 (1963).Google Scholar
  8. 8.
    L. Magnaradze, “A generalization of the Plemelj-Privalov theorem,” Soobshch. Akad. Nauk Gruz. SSR,8, No. 8 (1947).Google Scholar

Copyright information

© Consultants Bureau 1968

Authors and Affiliations

  • L. I. Kolesnik
    • 1
  1. 1.Kiev

Personalised recommendations