Advertisement

Ukrainian Mathematical Journal

, Volume 23, Issue 1, pp 20–26 | Cite as

Construction of chebyshev approximations using functions of interpolation classes

  • E. Ya. Remez
  • V. T. Gavrilyuk
Article
  • 25 Downloads

Keywords

Chebyshev Approximation Interpolation Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. T. Gavrilyuk and E. Ya. Remez, “A result concerning functions of an interpolation class,” Dokl. Akad. Nauk SSSR,183, No.4 (1968).Google Scholar
  2. 2.
    E. Aparo, “Su un procedimento di approssimazione secondo cebyscev,” Atti Accad. naz. Lincei Rend. Cl. Sci., Fis., Mat. e Nat.,28, No. 3, 311–317 (1960).Google Scholar
  3. 3.
    Th. Motzkin, “Approximation by curves of a unisolvent family,” Bull. Amer. Math. Soc.,55, No. 8, 789–793 (1949).Google Scholar
  4. 4.
    L. Tornheim, “On n-parameter families of functions,” Trans. Amer. Math. Soc.,69, No. 3, 457–467 (1950).Google Scholar
  5. 5.
    E. P. Novodvorskii and I. Sh. Pinsker, “The maximum-smoothing process,” Uspekhi Mat. Nauk,6, No. 6 (1951).Google Scholar
  6. 6.
    Ph. C. Curtis, “n-Parameter families and best approximation,” Pacific J. of Math.,9, No. 4, 1013–1025 (1959).Google Scholar
  7. 7.
    M. I. Morozov, “Some problems in uniform approximation,” Izv. Akad. Nauk SSSR, Ser. Matem.,16, No. 1 (1952).Google Scholar
  8. 8.
    V. N. Burov, “Some effective methods of solving P. L. Chebyshev's problem,” Izv. Vuzov, Matemtika, No. 1 (1957).Google Scholar
  9. 9.
    V. N. Burov, “Some problems concerning uniform approximation,” Uch. Zap. Leningr. Ped. In-ta,218 (1961).Google Scholar
  10. 10.
    E. Ya. Remez, “Sur le calcul effectif des polynomes d'approximation de Tchebycheff,” C. R. Acad. Sci. Paris,199, 337–339 (1934).Google Scholar
  11. 11.
    E. Ya. Remez, Elements of Numerical Methods for Chebyshev Approximation [in Russian], Naukova Dumka, Kiev (1969).Google Scholar
  12. 12.
    E. Ya. Remez, “A method for successive Chebyshev interpolation,” Uspekhi Mat. Nauk,12, No.2 (1960).Google Scholar
  13. 13.
    E. Ya. Remez and V. T. Gavrilyuk, “Numerical development of some approaches to the approximate solution of Chebyshev problems with parameters entering nonlinearly,” II, Uspekhi Mat. Nauk,13, No.1 (1961).Google Scholar
  14. 14.
    E. Ya. Remez and V. T. Gavrilyuk, “Numerical development of some approaches to the approximate solution of Chebyshev problems with parameters entering nonlinearly,” III, Uspekhi. Mat. Nauk,13, No. 2 (1961).Google Scholar
  15. 15.
    E. W. Cheney, Introduction to Approximation Theory, New York (1966).Google Scholar

Copyright information

© Consultants Bureau 1972

Authors and Affiliations

  • E. Ya. Remez
    • 1
  • V. T. Gavrilyuk
    • 1
  1. 1.Mathematics InstituteAcademy of Sciences of the USSRUSSR

Personalised recommendations