Skip to main content
Log in

Vorticity in plane parallel, axially symmetrical or spherical flows of viscous fluid

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

For viscous (barotropic or incompressible) fluids it is shown that, if the vorticity and the viscous force are orthogonal, vortex lines are convected by a vector field which fits with the velocity field when viscosity vanishes (extension of Helmholtz theorem); it is also found that energy remains constant along the field lines of this vector field (extension of Bernoulli theorem).

If, moreover, vorticity and velocity are orthogonal too, the magnitude of the vorticity then behaves as the density of a fluid which flows along streamsheets according to this very same vector field. These properties are mainly encountered for plane parallel flows, axially symmetrical flows, spherical flows, but also for some other miscellaneous flow geometries such as unidirectional or radial flows. The set of the former three flows can even be characterized by these properties; that enhances this set of important flow geometries, avails a general view on vorticity behavior, and explains the great simplicity of vorticity equations in these cases. Numerous examples and comments are given for illustrating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lamb, H.,Hydrodynamics. Cambridge: University Press; New York: Dover (1945).

    Google Scholar 

  2. Prager, W.,Introduction to Mechanics of Continua. Boston: Ginn and Company (1961).

    Google Scholar 

  3. Sedov, L.,Foundations of the Non-Linear Mechanics of Continua. Oxford: Pergamon Press (1966).

    Google Scholar 

  4. Appel, P.,Traité de Mécanique Rationnelle, Tome 3, Equilibre et Mouvement des Milieux Continus. Paris: Gauthiers Villars (1903).

    Google Scholar 

  5. Ericksen, J.L., Tensor fields. In: S. Flugge (ed.),Principles of classical mechanics and field theory, Encyclopedia of Physics/Hanbuch der Physik, Vol. 3.1. Berlin: Springer Verlag (1960) pp. 794–858.

    Google Scholar 

  6. Crocco, L. and Pascucci, L., Diagrammi termodinamici dei gas di combustione; indicazioni per l'applicatione dei diagrammi al calcolo del ciclo del motore a scoppio (1947) Monograf. Scient.di aeronautica, 2, pl, 23 (Roma-Stabilimento Tipografico Fausto Failli). See also: Serrin, J., Mathematical principles of classical fluid mechanics. In: S. Flugge (ed.),Fluid Dynamics I, Encyclopedia of Physics/Handbuch der Physik, Vol. 8.1 (1959) pp. 125–263 § 38–39.

  7. Germain, P.,Mécanique des Milieux Continus. Paris: Masson (1962).

    Google Scholar 

  8. Ionescu-Bujor, Etude intrinsèque des écoulements permanents et rotationnels d'un fluide parfait (1961). Paris: Thèse Faculté des Sciences de Paris.

    Google Scholar 

  9. Kaplun, S., The role of coordinate systems in boundary layer theory.J. Applied Math. and Phys. (ZAMP) 5 (1954) 111–135.

    Google Scholar 

  10. Legner, H., On Kaplun's optimal coordinates.J. Fluid Mech. 115 (1982) 379–393.

    Google Scholar 

  11. Schlichting, H.,Boundary Layer Theory, 7th edn. New York: McGraw-Hill (1979).

    Google Scholar 

  12. Landau, L. and Lifschitz, E.,Fluid Mechanics, Course of Theoretical Physics, Vol. 6 2nd edn. Oxford: Pergamon Press (1987).

    Google Scholar 

  13. Truesdell, C. and Toupin, R.,The classical field theories. In: S. Flugge (ed.),Encyclopedia of Physiks/Hanbuch der Physik, Vol. 3.1,Principles of Classical Mechanics and Field Theory. Berlin: Springer Verlag (1960) pp. 226–793.

    Google Scholar 

  14. Oroveanu, T., On a class of viscous fluid motions.Revue Roumaine des Sciences Techniques-Serie de Mécanique Appliquée, Vol. 33. (1988) 135–144.

    Google Scholar 

  15. Casal, P. and Gouin, H., Invariance properties of inviscid fluids of gradeN. Lecture Notes in Physics Vol. 344. Springer-Verlag (1989) pp. 85–98.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouthier, M. Vorticity in plane parallel, axially symmetrical or spherical flows of viscous fluid. Appl. Sci. Res. 50, 1–27 (1993). https://doi.org/10.1007/BF01086450

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01086450

Keywords

Navigation