Plant Systematics and Evolution

, Volume 221, Issue 1–2, pp 89–105 | Cite as

Generic delimitation and phylogeny of theCarduncellus-Carthamus complex (Asteraceae) based on ITS sequences

  • R. Vilatersana
  • A. Susanna
  • N. Garcia-Jacas
  • T. Garnatje
Article

Abstract

Within the Mediterranean complexCarduncellus-Carthamus, taxonomic classification has proven problematic. Numerous attempts to clarify the relative systematic boundaries have included splittingCarduncellus andCarthamus into several genera, but none of these proposed classifications have been generally accepted. For a comprehensive resolution of the relationships within this group, we used sequences of the Internal Transcribed Spacers (ITS) of nuclear ribosomal DNA. The results indicate that the complex should be classified into four genera:Carduncellus, Carthamus, Femeniasia andPhonus. The relationship between the western group (Carduncellus, Femeniasia andPhonus) and the eastern genusCarthamus are not resolved by analysis of ITS sequences, but the two groups are probably not close relatives. The ITS classifications corresponded with biogeography and less with morphological characters, which have also been the main source of confusion in traditional classifications. Most of the unusual morphological features in theCarduncellus-Carthamus complex appear to be reversals to ancestral character states.

Key words

Carduncellus Carthamus Femeniasia Phonus phylogeny ITS sequences 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashri A., Knowles P. F. (1960) Cytogenetics of safflower (Carthamus L.) species and their hybrids. Agron. Jour. 52: 11–17.Google Scholar
  2. Bain J. F., Jansen R. K. (1995) A phylogenetic analysis of the auroidSenecio (Asteraceae) complex based on ITS sequence data. Plant Syst. Evol. 195: 209–219.Google Scholar
  3. Baldwin B. G. (1992) Phylogenetic utility of the Internal Transcribed Spacers of nuclear ribosomal DNA in plants: an example from the Compositae. Molec. Phylogenet. Evol. 1: 3–16.PubMedGoogle Scholar
  4. Baldwin B. G. (1993) Molecular phylogenetics ofCalycadenia (Compositae) based on ITS sequences of nuclear ribosomal DNA: chromosomal and morphological evolution reexamined. Amer. J. Bot. 80: 222–238.Google Scholar
  5. Battandier J. A. (1890) Dycotyledonées. In: Battandier J. A., Trabut A. (eds.) Flore de l'Algérie, contenant la description de toutes les plantes signalées jusqu'à ce jour comme spontanées en Algérie et catalogue des plantes du Maroc. Alger.Google Scholar
  6. Bayer R. J., Soltis D. E., Soltis P. S. (1996) Phylogenetic inferences inAntennaria (Asteraceae: Gnaphalieae: Cassiniinae) based on sequences from nuclear ribosomal DNA internal transcribed spacers (ITS). Amer. J. Bot. 83: 516–527.Google Scholar
  7. Bentham G. (1873) Compositae. In: Bentham G., Hooker J. D. (eds.) Genera plantarum 2(1). London.Google Scholar
  8. Boissier E. (1873) Flora orientalis, sive enumeratio plantarum in Oriente a Graecia et Aegypto ad Indiae fines hucusque observatarum. Genève.Google Scholar
  9. Bremer K. (1988) The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42: 795–803.Google Scholar
  10. Bremer K. (1994) Asteraceae. Cladistics and classification. Timber Press, Portland.Google Scholar
  11. Cardona M. A., Contandriopoulos J. (1979). Endemism and evolution in the islands of the Western Mediterranean. In: Bramwell D. (ed.) Plants and Islands. Academic Press, London.Google Scholar
  12. Cassini H. (1819) [Different articles]. Dictionnaire de Sciences Naturelles. Paris. Cited by King R., Dawson H. W. (1975). Cassini on Compositae. Oriole Editions, New York.Google Scholar
  13. De Candolle A. P. (1838) Prodromus systematis naturalis regni vegetabilis 6. Paris.Google Scholar
  14. Dittrich M. (1968) Morphologische Untersuchungen an den Früchten der Subtribus Cardueae-Centaureinae (Compositae). Willdenowia 5: 67–107.Google Scholar
  15. Dittrich M. (1969) Anatomische Untersuchungen an den Früchten vonCarthamus L. undCarduncellus Adans. (Compositae). Candollea 24(2): 263–277.Google Scholar
  16. Dittrich M. (1977) Cynareae — systematic review. In: Heywood V. H., Harbone J. B., Turner B. L. (eds.) The Biology and Chemistry of Compositae. Academic Press, London.Google Scholar
  17. Donoghue M. J., Olmstead R. G., Smith J. F., Palmer J. D. (1992) Phylogenetic relationships of Dipsacales based onrbcL sequences. Ann. Missouri Bot. Garden 79: 333–345.Google Scholar
  18. Doyle J. J., Doyle J. L. (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11–15.Google Scholar
  19. Estilai A. (1977) Interspecific hybrid betweenCarthamus tinctorius andC. alexandrinus. Crop Sci. 17: 800–802.Google Scholar
  20. Estilai A., Knowles P. F. (1976) Cytogenetic studies ofCarthamus divaricatus with eleven pairs of chromosomes and its relationship to otherCarthamus species (Compositae). Amer. J. Bot. 63: 771–782.Google Scholar
  21. Estilai A., Knowles P. F. (1978) Relationship ofCarthamus leucocaulos to otherCarthamus species (Compositae). Canad. Jour. Genet. Cytol. 20: 221–233.Google Scholar
  22. Felsenstein J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.Google Scholar
  23. Francisco-Ortega J., Jansen R. K., Santos-Guerra, A. (1996) Chloroplast DNA evidence of colonization, adaptive radiation and hybridization in the evolution of the Macaronesian flora. Proc. Natl. Acad. Sci. USA 93: 4085–4090.PubMedGoogle Scholar
  24. Godron D. A. (1852) Synantherées. In: Grenier J. C., Godron D. A. (eds.) Flore de la France 2. F. Savy, Paris, pp. 81–392.Google Scholar
  25. Hanelt P. (1963) Monographische Übersicht der GattungCarthamus L. (Compositae). Feddes Repert. 67: 41–180.Google Scholar
  26. Hanelt P. (1976)Carthamus L. andCarduncellus Adans. In: Tutin T. G., Heywood V. H., Burges N. A., Valentine D. H., Walters S. M., Webb D. A. (eds.) Flora Europaea 4. Cambridge University Press, Cambridge, pp. 302–304.Google Scholar
  27. Hoffmann O. (1894) Compositae. In: Engler A., Prantl K. (eds.) Die natürlichen Pflanzenfamilien 4(5). Leipzig, pp. 87–387.Google Scholar
  28. Jahandiez E., Maire R. (1934) Catalogue des plantes du Maroc. Alger.Google Scholar
  29. Kim K. J., Jansen R. K. (1994) Comparisons of phylogenetic hypothesis among different data sets in dwarf dandelions (Krigia, Asteraceae): additional information from internal transcribed spacers sequences of nuclear ribosomal DNA. Plant Syst. Evol. 190: 157–185.Google Scholar
  30. Lidén M., Fukuhara T., Rylander J., Oxelman B. (1997) Phylogeny and classification of Fumariaceae, with emphasis onDicentra s. l. based on the plastid generps16 intron. Plant Syst. Evol. 206: 411–420.Google Scholar
  31. Linné C. (1753) Species Plantarum. Holmiae.Google Scholar
  32. López González G. (1990) Acerca de la clasificación natural del géneroCarthamus L. s. l. Anales Jard. Bot. Madrid 47(1): 11–34.Google Scholar
  33. Maddison D. R. (1991) The discovery and importance of multiple islands of most parsimonious trees. Syst. Zool. 40: 315–328.Google Scholar
  34. McDade L. A. (1992) Hybrids and phylogenetic systematics II: the impact of hybrids on cladistic analysis. Evolution 46: 1329–1346.Google Scholar
  35. Morgan D. R. (1997) Decay analysis of large sets of phylogenetic data. Taxon 46: 509–517.Google Scholar
  36. Nepokroeff M., Sytsma K. J. (1996) Systematics and patterns of speciation and colonization in HawaiianPsychotria and relatives based on phylogenetic analysis of ITS sequence data. Amer. J. Bot. 83, Suppl.: 181–182.Google Scholar
  37. Nyman C. F. (1878–1890) Conspectus Florae Europaeae. Örebro.Google Scholar
  38. Petit D. (1997) Generic interrelationship of the Cardueae (Compositae): a cladistic analysis of morphological data. Plant Syst. Evol. 207: 173–203.Google Scholar
  39. Pomel A. (1860) Matériaux pour la Flore Atlantique. Caen.Google Scholar
  40. Pomel A. (1874) Nouveaux matériaux pour la Flore Atlantique. Paris.Google Scholar
  41. Quézel P., Santa S. (1963) Nouvelle flore de l'Algérie et des régions désertiques méridionales. Editions du Centre National de la Récherche Scientifique, Paris.Google Scholar
  42. Rivas Goday S., Rivas Martínez S. (1967) Acerca de losCarthamo-Carduncellus de laOnonido-Rosmarinetea peninsular. Anales Inst. Bot. Cavanilles 25: 188–197.Google Scholar
  43. Samuel R., Bachmair A., Jobst J., Ehrendorfer F. (1997) ITS sequences from nuclear rDNA suggest unexpected phylogenetic relationships between Euro-Mediterranean, East Asiatic and North American taxa ofQuercus (Fagaceae). Plant Syst. Evol. 211: 129–139.Google Scholar
  44. Sang T., Crawford D. J., Stuessy T. F., Silva M. (1995) ITS sequences and the phylogeny of the genusRobinsonia (Asteraceae). Syst. Bot. 20: 55–64.Google Scholar
  45. Schank S. C., Knowles P. F. (1964) Cytogenetics of hybrids ofCarthamus species (Compositae) with ten pairs of chromosomes. Amer. J. Bot. 51 (10): 1093–1102.Google Scholar
  46. Soltis D. E., Kuzoff R. K. (1993) ITS sequence homogeneity within and among populations ofLomatium grayi andL. laevigatum (Umbelliferae). Molec. Phylogenet. Evol. 2: 166–170.PubMedGoogle Scholar
  47. Soltis D. E., Kuzoff R. K., Soltis P. S., Collier T. G., Edgerton M. L. (1991) TheHeuchera group (Saxifragaceae): evidence for chloroplast transfer and paraphyly. Amer. J. Bot. 78: 1091–1112.Google Scholar
  48. Sun Y., Skinner D. Z., Liang G. H., Hulbert S. H. (1994) Phylogenetic analysis ofSorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA. Theor. Appl. Genet. 89: 26–32.Google Scholar
  49. Susanna A. (1988)Femeniasia, novus genus Carduearum. Collect. Bot. Barcelona 17: 83–88.Google Scholar
  50. Susanna A., Garcia-Jacas N., Soltis D. E., Soltis P. S. (1995) Phylogenetic relationships in tribe Cardueae (Asteraceae) based on ITS sequences. Amer. J. Bot. 82: 1056–1068.Google Scholar
  51. Susanna A., Garnatje T., Garcia-Jacas N. (1999) Molecular phylogeny ofCheirolophus (Asteraceae: Cardueae-Centaureinae) based on ITS sequences of nuclear ribosomal DNA. Plant Syst. Evol. 214: 147–160.Google Scholar
  52. Susanna A., Vilatersana R. (1996) Las afinidades deFemeniasia Susanna (Compositae), o rectificar es de sabios. Anales Jard. Bot. Madrid 544: 355–357.Google Scholar
  53. Swofford D. L. (1991) PAUP: Phylogenetic analysis using parsimony, version 3.1. Illinois Natural History Survey, Champaign.Google Scholar
  54. Swofford D. L., Olsen G. J. (1990) Phylogeny reconstruction. In: Hillis D., Moritz C. (eds.) Molecular systematics. Sinauer, Sunderland, pp. 411–501.Google Scholar
  55. Wagenitz G., Hellwig F. H. (1996) Evolution of characters and phylogeny of the Centaureinae. In: Hind D. J. N., Beentje H. G. (eds.) Compositae: Systematics. Proceedings of the International Compositae Conference, Kew, 1994. Royal Botanical Gardens, Kew, pp. 491–510.Google Scholar
  56. White T. J., Bruns T., Lee S., Taylor J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M., Gelfand D., Sninsky J., White T. (eds.) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp. 315–322.Google Scholar
  57. Wojciechowski M. F., Sanderson M. J., Baldwin B. G., Donoghue M. J. (1993) Monophyly of aneuploidAstragalus (Fabaceae): evidence from nuclear ribosomal DNA Internal Transcribed Sequences. Amer. J. Bot. 80: 711–722.Google Scholar

Copyright information

© Springer-Verlag 2000

Authors and Affiliations

  • R. Vilatersana
    • 1
  • A. Susanna
    • 1
  • N. Garcia-Jacas
    • 1
  • T. Garnatje
    • 1
  1. 1.Institut Botanic de Barcelona (CSIC)BarcelonaSpain

Personalised recommendations