Ukrainian Mathematical Journal

, Volume 26, Issue 3, pp 246–259 | Cite as

A contribution to kolmogorov problem of relationships among upper bounds of derivatives of real functions given on entire axis

  • V. K. Dzyadyk
  • V. A. Dubovik


Real Function Entire Axis Kolmogorov Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. M. Rodov, “Relationships among upper bounds of derivatives of functions of real variables,” Izv. Akad. Nauk SSSR, Ser. Matem.,10, No. 2 (1946).Google Scholar
  2. 2.
    J. Hadmard, “Sur le Module Maximum d'une Fonction et de ses Derivees,” C. R. Seanses Soc. Math., Fr.,42 (1914).Google Scholar
  3. 3.
    G. E. Shilov, “On inequalities among derivatives,” Coll. of Students' Works, Moscow State Univ. [in Russian], Vol. 1 (1937).Google Scholar
  4. 4.
    A. N. Kolmogorov, “On inequalities among upper bounds of successive derivatives of an arbitrary function of infinite interval,” Uch. Zap. MGU, Ser. Mat., No, 30 (1939).Google Scholar
  5. 5.
    A. M. Rodov, “Sufficient conditions of existence of a function of real variable with given upper bounds of modulus of the function itself and its five successive derivatives,” Uch. Zap. Belorussi. Gos. Univ., No. 19 (1954).Google Scholar
  6. 6.
    N. E. Nörlund, Differenzenrechnung, Berlin (1924).Google Scholar
  7. 7.
    G. M. Fikhtengol'ts, A Course of Differential and Integral Calculus [in Russian], Vol. 3, Nauka, Moscow (1961).Google Scholar
  8. 8.
    A. O. Helfond, Finite Difference Calculus [Russian translation], Nauka, Moscow (1961).Google Scholar
  9. 9.
    E. Titchmarsh, Riemann Zeta Functions [Russian translation], IL, Moscow (1947).Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • V. K. Dzyadyk
    • 1
    • 2
  • V. A. Dubovik
    • 1
    • 2
  1. 1.Institute of Mathematics of the Academy of Sciences of the Ukrainian SSRUSSR
  2. 2.Kiev Technological Institute of Food IndustryUSSR

Personalised recommendations