Advertisement

Ukrainian Mathematical Journal

, Volume 20, Issue 3, pp 338–343 | Cite as

Random oscillations of non autonomous quasilinear stochastic systems

  • V. G. Kolomiets
Brief Communications
  • 25 Downloads

Keywords

Stochastic System Random Oscillation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. N. Kolmogorov, “Analytic methods in probability theory,” UMN, No. 5, 5–41(1938).Google Scholar
  2. 2.
    L.S. Pontryagin, A.A. Andronov, and A. A. Vitt, “The statistical treatment of dynamical systems,” Collected Works of A.A. Andronov [in Russian], Izd-vo AN SSSR (1956).Google Scholar
  3. 3.
    N. N. Bogolyubov, Certain Statistical Methods in Mathematical Physics [in Russian], Izd-vo AN UkrSSR (1945).Google Scholar
  4. 4.
    N. N. Bogolyubov and Yu. A. Mitropol'skii, Asymptotic Methods in the Theory of Nonlinear Oscillations [in Russian], Nauka (1963).Google Scholar
  5. 5.
    Yu. A. Mitropol'skii, Lectures on the Averaging Method in Nonlinear Mechanics [in Russian], Naukova Dumka (1966).Google Scholar
  6. 6.
    R. Z. Khas'minskii, “The averaging principle for parabolic and elliptic differential equations and for Markov processes with a small diffusion,” Teoriya Veroyatnostei i ee Primeneniya,8, No. 1, 3–25 (1963).Google Scholar
  7. 7.
    V. G. Kolomiets, “Random oscillations in quasilinear systems,” Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, Klasse für Mathematik, Physik und Technik, No. 1, 61–66 (1965).Google Scholar
  8. 8.
    T. K. Caughey, “The response of one class of nonlinear oscillators to stochastic excitations,” Mekhanika, Collected Translations of Foreign Articles [in Russian], 3* 91, 17–27 (1965).Google Scholar

Copyright information

© Consultants Bureau 1969

Authors and Affiliations

  • V. G. Kolomiets
    • 1
  1. 1.Mathematics Institute of the Academy of Sciences of the Ukrainian SSRUSSR

Personalised recommendations