Ukrainian Mathematical Journal

, Volume 31, Issue 4, pp 351–355 | Cite as

Noether theory for a general boundary-value problem with Carleman shift and with conjugation in the class of generalized analytic functions

  • N. T. Mishnyakov
  • A. M. Nikolaichuk
Brief Communications


Analytic Function Generalize Analytic Function Carleman Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    I. N. Vekua, Generalized Analytic Functions, Pergamon (1962).Google Scholar
  2. 2.
    B. V. Boyarskii, “The theory of generalized analytic vectors,” Ann. Polon. Math.,17, No. 3, 281–318 (1966).Google Scholar
  3. 3.
    G. S. Litvinchuk, “The Noether theory for a system of singular integral equations with a Carleman shift and complex-conjugate unknowns,” Izv. Akad. Nauk SSSR,31, No. 3, 563–586 (1967);32, No. 6, 1414–1417 (1968).Google Scholar
  4. 4.
    I. B. Simonenko, “The Riemann boundary-value problem for n pairs of functions with measurable coefficients and its application to the investigation of singular integrals in the space Lp with a weight,” Izv. Akad. Nauk SSSR,28, No. 2, 277–306 (1964).Google Scholar
  5. 5.
    D. A. Kveselava, “Some boundary-value problems in the theory of functions,” Tr. Tbilissk. Mat. Inst., Akad. Nauk Gruz. SSR,16, 39–80 (1948).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • N. T. Mishnyakov
    • 1
  • A. M. Nikolaichuk
    • 1
  1. 1.Rostov-on-Don Institute of Agricultural Mechanical Engineering, Odessa Technological Institute of the Food IndustryUSSR

Personalised recommendations