Advertisement

Ukrainian Mathematical Journal

, Volume 27, Issue 4, pp 351–356 | Cite as

On the structure of a σ-algebra of borel sets and the convergence of certain stochastic series in Banach spaces

  • V. V. Buldygin
  • Yu. I. Petunin
  • A. N. Plichko
  • I. Ya. Shneiberg
Article
  • 20 Downloads

Keywords

Banach Space Stochastic Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    L. G. Afanas'eva and Yu. I. Petunin, “The σ-algebras generated by comparable normed topologies,” Trudy Institute Matematiki VGU, No. 1 (1970).Google Scholar
  2. 2.
    U. Grenander, Probabilities on Algebraic Structures, Wiley, New York (1963).Google Scholar
  3. 3.
    N. Bourbaki, Topological Vector Spaces [Russian translation], IL, Moscow (1959).Google Scholar
  4. 4.
    I. I. Gikhman and A. V. Skorokhod, Theory of Stochastic Processes [in Russian], Nauka, Moscow (1971).Google Scholar
  5. 5.
    K. Ito and M. Nisio, “On the convergence of sums of independent Banach space valued variables,” Osaka J. Math.,5, No. 1, 35–48 (1968).Google Scholar
  6. 6.
    K. Kuratowski, Topology [Russian translation], Vol. 1, Mir, Moscow (1966).Google Scholar
  7. 7.
    S. Banach, Course of Functional Analysis [in Ukrainian], Radyans'ka Shkola, Kiev (1948).Google Scholar
  8. 8.
    Yu. I. Petunin, “A criterion for the reflexiveness of Banach space,” Dokl. Akad. Nauk SSSR,140, No. 1 (1961).Google Scholar
  9. 9.
    V. V. Buldygin, “On the convergence of stochastic sequences in Banach space,” Dokl. Akad. Nauk SSSR,213, No. 5 (1973).Google Scholar
  10. 10.
    J. B. Walsh, “A note on uniform convergence of stochastic processes,” Proc. Amer, Math. Soc.,18, 129–132 (1967).Google Scholar
  11. 11.
    J. Naresh and G. Kallianpur, “A note on uniform convergence of stochastic processes,” Proc. Amer. Math. Soc.,25, No. 4 (1970).Google Scholar
  12. 12.
    R. Dudley, “The sizes of compact subsets of Hilbert space and continuity of Gaussian processes,” J. of Functional Analysis,1, No. 3 (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • V. V. Buldygin
    • 1
    • 2
  • Yu. I. Petunin
    • 1
    • 2
  • A. N. Plichko
    • 1
    • 2
  • I. Ya. Shneiberg
    • 1
    • 2
  1. 1.Institute of MathematicsAcademy of Sciences of the Ukrainian SSRUSSR
  2. 2.Kiev State UniversityUSSR

Personalised recommendations