Ukrainian Mathematical Journal

, Volume 20, Issue 4, pp 408–416 | Cite as

Groups satisfying the weak minimal condition

  • D. I. Zaitsev


Minimal Condition Weak Minimal Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    S. N. Chernikov, “Finiteness conditions in the general theory of groups,” UMN, XIV, No.5, 45–96 (1959).Google Scholar
  2. 2.
    D. I. Zaitsev, “Groups satisfying the weak minimal condition,” Dokl. Akad. Nauk SSSR,178, No.4, 780–782 (1968).Google Scholar
  3. 3.
    M. I. Kargapolov, “On a problem of O. Yu. Schmidt,” SMZh,4, 232–235 (1963).Google Scholar
  4. 4.
    D. M. Smirnov, “To the theory of finitely approximated group's,” UMZh,XV, No. 4, 453–457 (1963).Google Scholar
  5. 5.
    Yu. M. Gorchakov, “Primitively factorizable groups,” Uch. Zap. Permskogo Gos. Un-ta, No.2, 15–31 (1960).Google Scholar
  6. 6.
    S. N. Chernikov, “Complete groups possessing an ascending central series,” Matem. Sb., No.18, 397–422 (1946).Google Scholar
  7. 7.
    A. G. Kurosh, Theory of Groups, Chelsea Pub. Co., New York (1955).Google Scholar
  8. 8.
    S. N. Chernikov, “On the structure of groups with finite classes of conjugate elements,” Dokl. Akad. Nauk SSSR, 115, 60–63 (1957).Google Scholar
  9. 9.
    S. N. Chernikov, “Infinite locally solvable groups,” Matem. Sb., No.7, 35–64 (1940).Google Scholar
  10. 10.
    Hirsch, “On infinite soluble groups (III),” Proc. London Math. Soc.,49, No. 3, 184–194 (1946).Google Scholar
  11. 11.
    A. I. Mal'tsev, “On some classes of infinite solvable groups,” Matem. Sb., No.28, 567–588 (1951).Google Scholar

Copyright information

© Consultants Bureau 1969

Authors and Affiliations

  • D. I. Zaitsev
    • 1
  1. 1.Mathematics InstituteAcademy of Sciences of Ukrainian SSRUkraine

Personalised recommendations