Advertisement

Ukrainian Mathematical Journal

, Volume 21, Issue 6, pp 687–693 | Cite as

Irreducible representations of the groups GL(2, q) and GL(3, q) over an arbitrary field of characteristic zero

  • E. S. Drobotenko
Brief Communications
  • 87 Downloads

Keywords

Irreducible Representation Characteristic Zero Arbitrary Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    G. Frobenius, “Uber Gruppencharaktere,” Sitzungsber. der Berl. Akad., 985–1021 (1896).Google Scholar
  2. 2.
    H. Jordan, “Group-characters of various types of linear groups,” Amer. J. Math.,29, 387–405 (1907).Google Scholar
  3. 3.
    J. Schur, “Untersuchungen uber die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen,” J. Reine Angew. Math.,132, 85–137 (1907).Google Scholar
  4. 4.
    R. Steinberg, “The representations of GL(3, q), GL(4, q), PGL(3, q), and (4, q),” Canadian J. Math.,3, 225–235 (1951).Google Scholar
  5. 5.
    J. A. Green, “The characters of the finite general linear groups,” Trans. Amer. Math. Soc.,80, No. 2, 402–447 (1955).Google Scholar
  6. 6.
    I. M. Gel'fand and M. I. Graev, “Categories of group representations and the problem of classification of irreducible representations,” Dokl. Akad. Nauk SSSR,146, No.4 (1962).Google Scholar
  7. 7.
    I. M. Gel'fand and M. I. Graev, “Irreducible unitary representations of a group of unimodular second order matrices with elements from a locally compact field,” Dokl. Akad. Nauk SSSR,149, No.3 (1963).Google Scholar
  8. 8.
    S. D. Berman, “Representations of finite groups over an arbitrary field and over rings of integers,” Izv. Akad. Nauk SSSR, Ser. Mat.,30, 1 (1966).Google Scholar

Copyright information

© Consultants Bureau, a division of Plenum Publishing Corporation 1970

Authors and Affiliations

  • E. S. Drobotenko
    • 1
  1. 1.Uzhgorod State UniversityUSSR

Personalised recommendations