Skip to main content
Log in

Stochastic evolution equations

  • Published:
Journal of Soviet Mathematics Aims and scope Submit manuscript

Abstract

The theory of strong solutions of Ito equations in Banach spaces is expounded. The results of this theory are applied to the investigation of strongly parabolic Ito partial differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. A. A. Arsen'ev, “Construction of a turbulent measure for the system of Navier-Stokes equations,” Dokl. Akad. Nauk SSSR,225, No. 1, 18–20 (1975).

    Google Scholar 

  2. A. V. Balakrishnan, Introduction to Optimization Theory in a Hilbert Space, Springer-Verlag (1971).

  3. V. V. Baklan, “The existence of solutions of stochastic equations in Hilbert space,” Dopovidi Akad. Nauk Ukr. RSR, No. 10, 1299–1303 (1963).

    Google Scholar 

  4. V. V. Baklan, “Equations in variational derivatives and Markov processes,” Dokl. Akad. Nauk SSSR,159, No. 4, 707–710 (1964).

    Google Scholar 

  5. V. V. Baklan, “The Cauchy problem for equations of parabolic type in infinite-dimensional space,” Mat. Fiz. Resp. Mezhved. Sb., No. 7, 18–25 (1970).

    Google Scholar 

  6. V. V. Baklan, “On a class of stochastic partial differential equations,” in: The Behavior of Systems in Random Media [in Russian], Kiev (1976), pp. 3–7.

  7. Ya. I. Belopol'skaya and Yu. L. Daletskii, “Diffusion processes in smooth Banach spaces and manifolds,” Tr. Mosk. Mat. Obshch.,37, 78–79 (1978).

    Google Scholar 

  8. Ya. I. Belopol'skaya and Z. I. Nagolkina, “On multiplicative representations of solutions of stochastic equations,” Dopovidi Akad. Nauk Ukr. RSR, No. 11, 977–969 (1977).

    Google Scholar 

  9. M. M. Vainberg, Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations, Halsted Press (1974).

  10. A. M. Vershik and O. A. Ladyzhenskaya, “On the evolution of the measure defined by the Navier-Stokes equations and on the solvability of the Cauchy problem for the statistical Hopf equation,” Dokl. Akad. Nauk SSSR,226, No. 1, 26–29 (1976).

    Google Scholar 

  11. A. M. Vershik and O. A. Ladyzhenskaya, “On the evolution of the measure defined by the Navier-Stokes equations and on the solvability of the Cauchy problem for the statistical equation of E. Hopf,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Akad. Nauk SSSR, Nauka, Leningrad,59, 3–24 (1976).

    Google Scholar 

  12. M. I. Vishik, “Quasilinear strongly elliptic systems of differential equations having divergence form,” Tr. Mosk. Mat. Obshch.,12, 125–184 (1963).

    Google Scholar 

  13. M. I. Vishik and A. I. Komech, “Infinite-dimensional parabolic equations connected with stochastic partial differential equations,” Dokl. Akad. Nauk SSSR,233, No. 5, 769–772 (1977).

    Google Scholar 

  14. M. I. Vishik and A. I. Komech, “On the solvability of the Cauchy problem for the direct Kolmogorov equation corresponding to a stochastic equation of Navier-Stokes type,” in: Complex Analysis and Its Applications [in Russian], Nauka, Moscow (1978), pp. 126–136.

    Google Scholar 

  15. Kh. Gaevskii, K. Greger, and K. Zakharias, Nonlinear Operator Equations and Operator Differential Equations [Russian translation], Mir, Moscow (1978).

    Google Scholar 

  16. L. I. Gal'chuk, “On the existence and uniqueness of a solution for stochastic equations over a semi-martingale,” Teor. Veroyatn. Ee Primen.,23, No. 4, 782–795 (1978).

    Google Scholar 

  17. I. M. Gel'fand and N. Ya. Vilenkin, Generalized Functions. Applications of Harmonic Analysis, Academic Press (1964).

  18. I. I. Gihman and A. V. Skorokhod, Stochastic Differential Equations, Springer-Verlag (1972).

  19. Yu. L. Daletskii, “Infinite-dimensional elliptic operators and parabolic equations related to them,” Usp. Mat. Nauk,22, No. 4, 3–54 (1967).

    Google Scholar 

  20. Yu. L. Daletskii, “Multiplicative operators of diffusion processes and differential equations in sections of vector bundles,” Usp. Mat. Nauk,30, No. 2, 209–210 (1975).

    Google Scholar 

  21. Yu. A. Dubinskii, “Nonlinear elliptic and parabolic equations,” in: Itogi Nauki i Tekhniki, Ser. Sov. Probl. Mat., Vol. 9, Moscow (1976), pp. 5–130.

    Google Scholar 

  22. K. Yosida, Functional Analysis, Springer-Verlag (1974).

  23. K. Ito, “On stochastic differential equations,” Matematika. Periodical Collection of Translations of Foreign Articles,1, No. 1, 78–116 (1957).

    Google Scholar 

  24. V. I. Klyatskin, Stochastic Description of Dynamical Systems with Fluctuating Parameters [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  25. S. G. Krein, Linear Differential Equations in Banach Space, Amer. Math. Soc. (1972).

  26. N. V. Krylov and B. L. Rozovskii, “On the Cauchy problem for linear stochastic partial differential equations,” Izv. Akad. Nauk SSSR, Ser. Mat.,41, No. 6, 1329–1347 (1977).

    Google Scholar 

  27. N. V. Krylov and B. L. Rozovskii, “On conditional distributions of diffusion processes,” Izv. Akad. Nauk SSSR, Ser. Mat.,42, No. 2, 356–378 (1978).

    Google Scholar 

  28. K. Kuratowski, Topology, Vol. 1, Academic Press (1966).

  29. V. A. Lebedev, “On the uniqueness of a weak solution of a system of stochastic differential equations,” Teor. Veroyatn. Ee Primen.,23, No. 1, 153–161 (1978).

    Google Scholar 

  30. J.-L. Lions, Some Methods of Solving Nonlinear Boundary Value Problems [Russian translation], Mir, Moscow (1972).

    Google Scholar 

  31. R. Sh. Liptser and A. N. Shiryaev, Statistics of Stochastic Processes [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  32. L. G. Margulis and B. L. Rozovskii, “Fundamental solutions of stochastic partial differential equations and filtration of diffusion processes,” Usp. Mat. Nauk,33, No. 2, 197 (1978).

    Google Scholar 

  33. A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics, MIT Press (1975).

  34. S. M. Nikol'skii, Approximation of Functions of Several Variables and Imbedding Theorems [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  35. E. A. Novikov, “Functionals and the method of random forces in the theory of turbulence,” Zh. Eksp. Teor. Fiz.,47, No. 5, 1919–1926 (1966).

    Google Scholar 

  36. B. L. Rozovskii, “On stochastic partial differential equations,” Mat. Sb.,96, No. 2, 314–341 (1975).

    Google Scholar 

  37. B. Simon, The P(Φ)2 Model of Euclidean Quantum Field Theory [Russian translation], Mir, Moscow (1976).

    Google Scholar 

  38. S. L. Sobolev, Applications of Functional Analysis in Mathematical Physics, Amer. Math. Soc. (1969).

  39. A. Friedman, Partial Differential Equations, Krieger (1976).

  40. S. Albeverio and R. Hoegh-Krohn, “Dirichlet forms and diffusion processes on rigged Hilbert spaces,” Z. Wahr. Verw. Geb.,40, No. 1, 1–57 (1977).

    Google Scholar 

  41. N. T. J. Bailey, “Stochastic birth, death, and migration processes for spatially distributed populations,” Biometrika,55, No. 1, 189–198 (1968).

    Google Scholar 

  42. A. V. Balakrishnan, “Stochastic optimization theory in Hilbert spaces. I,” Appl. Math. Opt.,1, No. 2, 97–120 (1974).

    Google Scholar 

  43. A. V. Balakrishnan, “Stochastic bilinear partial differential equations,” Lect. Notes Econ. Math. Syst.,111, 1–43 (1975).

    Google Scholar 

  44. Ya. I. Belopolskaya, “Markov processes with jumps and integrodifferential systems,” International Symposium on Stochastic Differential Equations, Abstracts of Communications, Vilnius (1978), pp. 12–16.

  45. A. Bensoussan, Filtrage Optimale des Systemes Linéaires, Dunod, Paris (1971).

    Google Scholar 

  46. A. Bensoussan and R. Temam, “Equations aux dérivées partielles stochastiques non linéaires (1),” Isr. J. Math.,11, No. 1, 95–129 (1972).

    Google Scholar 

  47. A. Bensoussan and R. Temam, “Equations stochastiques du type Navier-Stokes,” J. Funct. Anal.,13, No. 2, 195–222 (1973).

    Google Scholar 

  48. H. Brezis, Operateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert (North-Holland Mat. Stud.), North-Holland, Amsterdam-London; Eisevier, New York (1973).

    Google Scholar 

  49. F. E. Browder, “Nonlinear elliptic boundary-value problems,” Bull. Am. Math. Soc.,69, No. 6, 862–974 (1963).

    Google Scholar 

  50. F. E. Browder, “Nonlinear equations of evolution and nonlinear accretive operators in Banach spaces,” Bull. Am. Math. Soc.,73, No. 6, 867–874 (1967).

    Google Scholar 

  51. F. E. Browder, “Nonlinear operators and nonlinear equations of evolution in Banach spaces,” Proceedings of Symposia in Pure Mathematics, XVIII, Part 2, Am. Math. Soc., Providence, Rhode Island (1976).

    Google Scholar 

  52. J. F. Crow and M. Kimura, An Introduction to Population Genetics Theory, Harper and Row, New York (1970).

    Google Scholar 

  53. R. F. Curtain, “Estimation theory for abstract evolution equations excited by general white noise processes,” SIAM J. Cont. Optim.,14, No. 6, 1124–1149 (1976).

    Google Scholar 

  54. R. F. Curtain, “Stochastic evolution equations with general white noise disturbance,” J. Math. Anal. Appl.,60, No. 3, 570–595 (1977).

    Google Scholar 

  55. R. F. Curtain and P. L. Falb, “Stochastic differential equations in Hilbert space,” J. Diff. Eqs.,10, No. 3, 412–430 (1971).

    Google Scholar 

  56. D. A. Dawson, “Stochastic evolution equations,” Math. Biosci.,15, No. 3–4, 287–316 (1972).

    Google Scholar 

  57. D. A. Dawson, “Stochastic evolution equations and related measure processes,” J. Multivar. An.,5, No. 1, 1–52 (1975).

    Google Scholar 

  58. C. Doléans-Dade, “On the existence and unicity of solutions of stochastic integral equations,” Z. Wahr. Verw. Geb.,36, No. 2, 93–101 (1976).

    Google Scholar 

  59. W. Feller, “Diffusion processes in genetics,” Proc. Second Berkeley Symp. 1. Math. Stat. Prob., Calif. Univ. Press, Berkeley, pp. 227–246.

  60. W. H. Fleming, “Distributed parameter stochastic systems in population biology,” Lect. Notes Econ. Math. Syst.,107, 179–191 (1975).

    Google Scholar 

  61. B. Gaveau, “Intégrale stochastique radonifiante,” C. R. Acad. Sci.,276, No. 8, A617-A620 (1973).

    Google Scholar 

  62. L. Gross, “Abstract Wiener space,” Proc. 5th Berkeley Sympos. Math. Stat. Prob., 1965–1966, Vol.2, Part 1, Berkeley-Los Angeles (1967), pp. 31–42.

  63. L. Gross, “Potential theory on Hilbert space,” J. Funct. Anal.,1, No. 2, 123–181 (1968).

    Google Scholar 

  64. T. Hida and L. Strett, “On quantum theory in terms of white noise,” Nagoya Math. J.,68, Dec., 21–34 (1977).

    Google Scholar 

  65. N. Kazamaki, “Note on a stochastic integral equation,” Lect. Notes Math.,258, 105–108 (1972).

    Google Scholar 

  66. N. V. Krilov and B. L. Rozovskii, “On Cauchy problem for superparabolic stochastic differential equations,” Proc. Third Soviet-Japanese Symposium on Probability Theory, Tashkent (1975), pp. 77–79

  67. H. Kunita, “Stochastic integrals based on martingales taking values in Hilbert space,” Nagoya Math. J.,38, 41–52 (1970).

    Google Scholar 

  68. H.-H.Kuo, “Gaussian measures in Banach spaces,” Lect. Notes Math.,463 (1975).

  69. D. Lepingle and J. Y. Ouvrard, “Martingales browniennes hilbertiennes,” C. R. Acad. Sci.,276, No. 18, A1225-A1228 (1973).

    Google Scholar 

  70. J.-L. Lions and E. Magenes, Problèmes aux Limites non Homogenes et Applications, Vol. 2, Dunod, Paris (1968).

    Google Scholar 

  71. S. Ya. Mahno, “Limit theorems for stochastic equations with partial derivatives,” Int. Symposium on Stochastic Different. Equat., Abstracts of Communications, Vilnius (1978), pp. 73–77.

  72. G. Malécot, “Identical loci and relationship,“ Proc. 5th Berkeley Symp. Math. Stat. Prob., IV, 1967, Calif. Univ. Press, pp. 317–332.

  73. R. Markus, “Parabolic Ito equations,” Trans. Am. Math. Soc.,198, 177–190 (1974).

    Google Scholar 

  74. M. Metivier, “Intégrale stochastique par rapport a des processus a valeurs dans un espace de Banach reflexif,” Teor. Veroyatn. Ee Primen.;19, No. 4, 787–816 (1974).

    Google Scholar 

  75. M. Metivier, “Integration with respect to process of linear functionals” (Preprint).

  76. M. Metivier, “Reelle und Vektorwertige Quasimartingale und die Theorie der Stochastischen Integration,” Lect. Notes Math.,607 (1977).

  77. M. Metivier and J. Pellanmail, “A basic course on general stochastic integration,” Publ. Sém. Math. Inf. Rennes. Inst. Rech. Inf. Syst. Aleatoires, Rapport N 83, 1–55 (1977).

  78. M. Metivier and G. Pistone, “Une formule d'isometrie pour l'intégrale stochastique hilbertienne et equations d'évolution linéaires stochastiques,” Z. Wahr. Verw. Geb.,33, 1–18 (1975).

    Google Scholar 

  79. M. Metivier and G. Pistone, “Sur une equation d'évolution stochastique,” Bull. Soc. Math. France,104, 65–85 (1976).

    Google Scholar 

  80. P. A. Meyer, “Un cours sur les intégrales stochastiques,” Sem. Prob. X, Lect. Notes Math.,511, 249–400 (1976).

    Google Scholar 

  81. P. A. Meyer, “Notes sur les intégrales stochastiques. I. Intégrales Hilbertiennes,” Lect. Notes Math.,581, 446–463 (1977).

    Google Scholar 

  82. G. Minty, “Monotone (nonlinear) operators in Hilbert spaces,” Duke Math. J.,29, No. 3, 341–346 (1962).

    Google Scholar 

  83. E. Pardoux, “Sur des equations aux dérivées partielles stochastiques monotones,” C. R. Acad. Sci.,275, No. 2, A101-A103 (1972).

    Google Scholar 

  84. E. Pardoux, “Equations aux derivées partielles stochastiques non lineaires monotones. Etude de solutions fortes de type Ito,” Thése Doct. Sci. Math. Univ. Paris Sud. (1975).

  85. E. Pardoux, “Filtrage de diffusions avec conditiones frontieres: caracterisation de la densité conditionelle,” J. Statistique Processus Stochastiques, Proceedings, Grenoble, Lect. Notes Math.,636, 163–188 (1977).

    Google Scholar 

  86. P. E. Protter, “On the existence, uniqueness, convergence and explosions of solutions of systems of stochastic integral equations,” Ann. Probab.,5, No. 2, 243–261 (1977).

    Google Scholar 

  87. A. Shimizu, “Construction of a solution of a certain evolution equation,” Nagoya Math. J.,66, 23–36 (1977).

    Google Scholar 

  88. A. Shimizu, “Construction of a solution of a certain evolution equation. II” (Preprint).

  89. M. Viot, “Solutions faibles d'équations aux dérivées partielles stochastiques non linéaires,” Thése Doct. Sci. Univ. Pierre Marie Curie, Paris (1976).

    Google Scholar 

Download references

Authors

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennye Problemy Matematiki, Vol. 14, pp. 71–146, 1979.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krylov, N.V., Rozovskii, B.L. Stochastic evolution equations. J Math Sci 16, 1233–1277 (1981). https://doi.org/10.1007/BF01084893

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01084893

Keywords

Navigation