Abstract
The theory of strong solutions of Ito equations in Banach spaces is expounded. The results of this theory are applied to the investigation of strongly parabolic Ito partial differential equations.
Similar content being viewed by others
Literature cited
A. A. Arsen'ev, “Construction of a turbulent measure for the system of Navier-Stokes equations,” Dokl. Akad. Nauk SSSR,225, No. 1, 18–20 (1975).
A. V. Balakrishnan, Introduction to Optimization Theory in a Hilbert Space, Springer-Verlag (1971).
V. V. Baklan, “The existence of solutions of stochastic equations in Hilbert space,” Dopovidi Akad. Nauk Ukr. RSR, No. 10, 1299–1303 (1963).
V. V. Baklan, “Equations in variational derivatives and Markov processes,” Dokl. Akad. Nauk SSSR,159, No. 4, 707–710 (1964).
V. V. Baklan, “The Cauchy problem for equations of parabolic type in infinite-dimensional space,” Mat. Fiz. Resp. Mezhved. Sb., No. 7, 18–25 (1970).
V. V. Baklan, “On a class of stochastic partial differential equations,” in: The Behavior of Systems in Random Media [in Russian], Kiev (1976), pp. 3–7.
Ya. I. Belopol'skaya and Yu. L. Daletskii, “Diffusion processes in smooth Banach spaces and manifolds,” Tr. Mosk. Mat. Obshch.,37, 78–79 (1978).
Ya. I. Belopol'skaya and Z. I. Nagolkina, “On multiplicative representations of solutions of stochastic equations,” Dopovidi Akad. Nauk Ukr. RSR, No. 11, 977–969 (1977).
M. M. Vainberg, Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations, Halsted Press (1974).
A. M. Vershik and O. A. Ladyzhenskaya, “On the evolution of the measure defined by the Navier-Stokes equations and on the solvability of the Cauchy problem for the statistical Hopf equation,” Dokl. Akad. Nauk SSSR,226, No. 1, 26–29 (1976).
A. M. Vershik and O. A. Ladyzhenskaya, “On the evolution of the measure defined by the Navier-Stokes equations and on the solvability of the Cauchy problem for the statistical equation of E. Hopf,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Akad. Nauk SSSR, Nauka, Leningrad,59, 3–24 (1976).
M. I. Vishik, “Quasilinear strongly elliptic systems of differential equations having divergence form,” Tr. Mosk. Mat. Obshch.,12, 125–184 (1963).
M. I. Vishik and A. I. Komech, “Infinite-dimensional parabolic equations connected with stochastic partial differential equations,” Dokl. Akad. Nauk SSSR,233, No. 5, 769–772 (1977).
M. I. Vishik and A. I. Komech, “On the solvability of the Cauchy problem for the direct Kolmogorov equation corresponding to a stochastic equation of Navier-Stokes type,” in: Complex Analysis and Its Applications [in Russian], Nauka, Moscow (1978), pp. 126–136.
Kh. Gaevskii, K. Greger, and K. Zakharias, Nonlinear Operator Equations and Operator Differential Equations [Russian translation], Mir, Moscow (1978).
L. I. Gal'chuk, “On the existence and uniqueness of a solution for stochastic equations over a semi-martingale,” Teor. Veroyatn. Ee Primen.,23, No. 4, 782–795 (1978).
I. M. Gel'fand and N. Ya. Vilenkin, Generalized Functions. Applications of Harmonic Analysis, Academic Press (1964).
I. I. Gihman and A. V. Skorokhod, Stochastic Differential Equations, Springer-Verlag (1972).
Yu. L. Daletskii, “Infinite-dimensional elliptic operators and parabolic equations related to them,” Usp. Mat. Nauk,22, No. 4, 3–54 (1967).
Yu. L. Daletskii, “Multiplicative operators of diffusion processes and differential equations in sections of vector bundles,” Usp. Mat. Nauk,30, No. 2, 209–210 (1975).
Yu. A. Dubinskii, “Nonlinear elliptic and parabolic equations,” in: Itogi Nauki i Tekhniki, Ser. Sov. Probl. Mat., Vol. 9, Moscow (1976), pp. 5–130.
K. Yosida, Functional Analysis, Springer-Verlag (1974).
K. Ito, “On stochastic differential equations,” Matematika. Periodical Collection of Translations of Foreign Articles,1, No. 1, 78–116 (1957).
V. I. Klyatskin, Stochastic Description of Dynamical Systems with Fluctuating Parameters [in Russian], Nauka, Moscow (1975).
S. G. Krein, Linear Differential Equations in Banach Space, Amer. Math. Soc. (1972).
N. V. Krylov and B. L. Rozovskii, “On the Cauchy problem for linear stochastic partial differential equations,” Izv. Akad. Nauk SSSR, Ser. Mat.,41, No. 6, 1329–1347 (1977).
N. V. Krylov and B. L. Rozovskii, “On conditional distributions of diffusion processes,” Izv. Akad. Nauk SSSR, Ser. Mat.,42, No. 2, 356–378 (1978).
K. Kuratowski, Topology, Vol. 1, Academic Press (1966).
V. A. Lebedev, “On the uniqueness of a weak solution of a system of stochastic differential equations,” Teor. Veroyatn. Ee Primen.,23, No. 1, 153–161 (1978).
J.-L. Lions, Some Methods of Solving Nonlinear Boundary Value Problems [Russian translation], Mir, Moscow (1972).
R. Sh. Liptser and A. N. Shiryaev, Statistics of Stochastic Processes [in Russian], Nauka, Moscow (1974).
L. G. Margulis and B. L. Rozovskii, “Fundamental solutions of stochastic partial differential equations and filtration of diffusion processes,” Usp. Mat. Nauk,33, No. 2, 197 (1978).
A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics, MIT Press (1975).
S. M. Nikol'skii, Approximation of Functions of Several Variables and Imbedding Theorems [in Russian], Nauka, Moscow (1969).
E. A. Novikov, “Functionals and the method of random forces in the theory of turbulence,” Zh. Eksp. Teor. Fiz.,47, No. 5, 1919–1926 (1966).
B. L. Rozovskii, “On stochastic partial differential equations,” Mat. Sb.,96, No. 2, 314–341 (1975).
B. Simon, The P(Φ)2 Model of Euclidean Quantum Field Theory [Russian translation], Mir, Moscow (1976).
S. L. Sobolev, Applications of Functional Analysis in Mathematical Physics, Amer. Math. Soc. (1969).
A. Friedman, Partial Differential Equations, Krieger (1976).
S. Albeverio and R. Hoegh-Krohn, “Dirichlet forms and diffusion processes on rigged Hilbert spaces,” Z. Wahr. Verw. Geb.,40, No. 1, 1–57 (1977).
N. T. J. Bailey, “Stochastic birth, death, and migration processes for spatially distributed populations,” Biometrika,55, No. 1, 189–198 (1968).
A. V. Balakrishnan, “Stochastic optimization theory in Hilbert spaces. I,” Appl. Math. Opt.,1, No. 2, 97–120 (1974).
A. V. Balakrishnan, “Stochastic bilinear partial differential equations,” Lect. Notes Econ. Math. Syst.,111, 1–43 (1975).
Ya. I. Belopolskaya, “Markov processes with jumps and integrodifferential systems,” International Symposium on Stochastic Differential Equations, Abstracts of Communications, Vilnius (1978), pp. 12–16.
A. Bensoussan, Filtrage Optimale des Systemes Linéaires, Dunod, Paris (1971).
A. Bensoussan and R. Temam, “Equations aux dérivées partielles stochastiques non linéaires (1),” Isr. J. Math.,11, No. 1, 95–129 (1972).
A. Bensoussan and R. Temam, “Equations stochastiques du type Navier-Stokes,” J. Funct. Anal.,13, No. 2, 195–222 (1973).
H. Brezis, Operateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert (North-Holland Mat. Stud.), North-Holland, Amsterdam-London; Eisevier, New York (1973).
F. E. Browder, “Nonlinear elliptic boundary-value problems,” Bull. Am. Math. Soc.,69, No. 6, 862–974 (1963).
F. E. Browder, “Nonlinear equations of evolution and nonlinear accretive operators in Banach spaces,” Bull. Am. Math. Soc.,73, No. 6, 867–874 (1967).
F. E. Browder, “Nonlinear operators and nonlinear equations of evolution in Banach spaces,” Proceedings of Symposia in Pure Mathematics, XVIII, Part 2, Am. Math. Soc., Providence, Rhode Island (1976).
J. F. Crow and M. Kimura, An Introduction to Population Genetics Theory, Harper and Row, New York (1970).
R. F. Curtain, “Estimation theory for abstract evolution equations excited by general white noise processes,” SIAM J. Cont. Optim.,14, No. 6, 1124–1149 (1976).
R. F. Curtain, “Stochastic evolution equations with general white noise disturbance,” J. Math. Anal. Appl.,60, No. 3, 570–595 (1977).
R. F. Curtain and P. L. Falb, “Stochastic differential equations in Hilbert space,” J. Diff. Eqs.,10, No. 3, 412–430 (1971).
D. A. Dawson, “Stochastic evolution equations,” Math. Biosci.,15, No. 3–4, 287–316 (1972).
D. A. Dawson, “Stochastic evolution equations and related measure processes,” J. Multivar. An.,5, No. 1, 1–52 (1975).
C. Doléans-Dade, “On the existence and unicity of solutions of stochastic integral equations,” Z. Wahr. Verw. Geb.,36, No. 2, 93–101 (1976).
W. Feller, “Diffusion processes in genetics,” Proc. Second Berkeley Symp. 1. Math. Stat. Prob., Calif. Univ. Press, Berkeley, pp. 227–246.
W. H. Fleming, “Distributed parameter stochastic systems in population biology,” Lect. Notes Econ. Math. Syst.,107, 179–191 (1975).
B. Gaveau, “Intégrale stochastique radonifiante,” C. R. Acad. Sci.,276, No. 8, A617-A620 (1973).
L. Gross, “Abstract Wiener space,” Proc. 5th Berkeley Sympos. Math. Stat. Prob., 1965–1966, Vol.2, Part 1, Berkeley-Los Angeles (1967), pp. 31–42.
L. Gross, “Potential theory on Hilbert space,” J. Funct. Anal.,1, No. 2, 123–181 (1968).
T. Hida and L. Strett, “On quantum theory in terms of white noise,” Nagoya Math. J.,68, Dec., 21–34 (1977).
N. Kazamaki, “Note on a stochastic integral equation,” Lect. Notes Math.,258, 105–108 (1972).
N. V. Krilov and B. L. Rozovskii, “On Cauchy problem for superparabolic stochastic differential equations,” Proc. Third Soviet-Japanese Symposium on Probability Theory, Tashkent (1975), pp. 77–79
H. Kunita, “Stochastic integrals based on martingales taking values in Hilbert space,” Nagoya Math. J.,38, 41–52 (1970).
H.-H.Kuo, “Gaussian measures in Banach spaces,” Lect. Notes Math.,463 (1975).
D. Lepingle and J. Y. Ouvrard, “Martingales browniennes hilbertiennes,” C. R. Acad. Sci.,276, No. 18, A1225-A1228 (1973).
J.-L. Lions and E. Magenes, Problèmes aux Limites non Homogenes et Applications, Vol. 2, Dunod, Paris (1968).
S. Ya. Mahno, “Limit theorems for stochastic equations with partial derivatives,” Int. Symposium on Stochastic Different. Equat., Abstracts of Communications, Vilnius (1978), pp. 73–77.
G. Malécot, “Identical loci and relationship,“ Proc. 5th Berkeley Symp. Math. Stat. Prob., IV, 1967, Calif. Univ. Press, pp. 317–332.
R. Markus, “Parabolic Ito equations,” Trans. Am. Math. Soc.,198, 177–190 (1974).
M. Metivier, “Intégrale stochastique par rapport a des processus a valeurs dans un espace de Banach reflexif,” Teor. Veroyatn. Ee Primen.;19, No. 4, 787–816 (1974).
M. Metivier, “Integration with respect to process of linear functionals” (Preprint).
M. Metivier, “Reelle und Vektorwertige Quasimartingale und die Theorie der Stochastischen Integration,” Lect. Notes Math.,607 (1977).
M. Metivier and J. Pellanmail, “A basic course on general stochastic integration,” Publ. Sém. Math. Inf. Rennes. Inst. Rech. Inf. Syst. Aleatoires, Rapport N 83, 1–55 (1977).
M. Metivier and G. Pistone, “Une formule d'isometrie pour l'intégrale stochastique hilbertienne et equations d'évolution linéaires stochastiques,” Z. Wahr. Verw. Geb.,33, 1–18 (1975).
M. Metivier and G. Pistone, “Sur une equation d'évolution stochastique,” Bull. Soc. Math. France,104, 65–85 (1976).
P. A. Meyer, “Un cours sur les intégrales stochastiques,” Sem. Prob. X, Lect. Notes Math.,511, 249–400 (1976).
P. A. Meyer, “Notes sur les intégrales stochastiques. I. Intégrales Hilbertiennes,” Lect. Notes Math.,581, 446–463 (1977).
G. Minty, “Monotone (nonlinear) operators in Hilbert spaces,” Duke Math. J.,29, No. 3, 341–346 (1962).
E. Pardoux, “Sur des equations aux dérivées partielles stochastiques monotones,” C. R. Acad. Sci.,275, No. 2, A101-A103 (1972).
E. Pardoux, “Equations aux derivées partielles stochastiques non lineaires monotones. Etude de solutions fortes de type Ito,” Thése Doct. Sci. Math. Univ. Paris Sud. (1975).
E. Pardoux, “Filtrage de diffusions avec conditiones frontieres: caracterisation de la densité conditionelle,” J. Statistique Processus Stochastiques, Proceedings, Grenoble, Lect. Notes Math.,636, 163–188 (1977).
P. E. Protter, “On the existence, uniqueness, convergence and explosions of solutions of systems of stochastic integral equations,” Ann. Probab.,5, No. 2, 243–261 (1977).
A. Shimizu, “Construction of a solution of a certain evolution equation,” Nagoya Math. J.,66, 23–36 (1977).
A. Shimizu, “Construction of a solution of a certain evolution equation. II” (Preprint).
M. Viot, “Solutions faibles d'équations aux dérivées partielles stochastiques non linéaires,” Thése Doct. Sci. Univ. Pierre Marie Curie, Paris (1976).
Additional information
Translated from Itogi Nauki i Tekhniki, Seriya Sovremennye Problemy Matematiki, Vol. 14, pp. 71–146, 1979.
Rights and permissions
About this article
Cite this article
Krylov, N.V., Rozovskii, B.L. Stochastic evolution equations. J Math Sci 16, 1233–1277 (1981). https://doi.org/10.1007/BF01084893
Issue Date:
DOI: https://doi.org/10.1007/BF01084893