Survival analysis: A survey

Abstract

This paper is a survey of statistical methods used to analyze the length of time until a specified event occurs. These models have often been used to analyze the survival times (i.e., time until death) of medical patients, and so the term survival analysis is natural. In criminology, the main application of these models has been to analyze the time until recidivism, but many other applications are possible. The paper summarizes the statistical literature on survival analysis, and describes its applications in criminology. The methods are illustrated by an application to the prediction of time until recidivism for a sample of North Carolina prison releasees.

This is a preview of subscription content, log in to check access.

References

  1. Ahn, C. W., Blumstein, A., and Schervish, M. (1990). Estimation of arrest careers using hierarchical stochastic models.J. Quant. Criminol. 6: 131–152.

    Google Scholar 

  2. Amemiya, T. and Boskin, M. (1974). Regression analysis when the dependent variable is truncated normal, with an application to the duration of welfare dependency.Int. Ec. Rev. 20: 169–182.

    Google Scholar 

  3. Barton, R. R., and Turnbull, B. W. (1981). A failure rate regression model for the study of recidivism. In Fox, J. A. (ed.),Models in Quantitative Criminology, Academic Press, New York.

    Google Scholar 

  4. Berk, R. A., and Rauma, D. (1983). Capitalizing on random assignment to treatments: A regression-discontinuity evaluation of a crime-control program.J. Am. Stat. Assoc. 78: 21–27.

    Google Scholar 

  5. Berk, R. A., and Sherman, L. W. (1988). Police responses to family violence incidents: An analysis of an experimental design with incomplete randomization.J. Am. Stat. Assoc. 83: 70–76.

    Google Scholar 

  6. Bloom, H. S. (1979). Evaluating human service and correctional programs by modeling the timing of recidivism.Sociological Methods and Research 8: 179–208.

    Google Scholar 

  7. Blumenthal, S., and Marcus, R. (1975). Estimating population size with exponential failure.J. Am. Stat. Assoc. 70: 913–922.

    Google Scholar 

  8. Blumstein, A.,et al. (1986).Criminal Careers and “Career Criminals”, National Academy Press, Washington, D.C.

    Google Scholar 

  9. Carr-Hill, G. A., and Carr-Hill, R. A. (1972). Reconviction as a process.Br. J. Criminol. 12: 35–43.

    Google Scholar 

  10. Chamberlain, G. (1984). Panel data. In Griliches, Z., and Intriligator, M. (eds.),Handbook of Econometrics, Vol. 2, North-Holland, Amsterdam.

    Google Scholar 

  11. Cox, D. R. (1972). Regression models and life tables.J. Roy. Stat. Soc. Ser. B 34: 187–220.

    Google Scholar 

  12. Cox, D. R. (1975). Partial likelihood.Biometrika 62: 276–296.

    Google Scholar 

  13. Cox, D. R., and Oates, D. (1984).Analysis of Survival Data, Chapman and Hall, London.

    Google Scholar 

  14. Elandt-Johnson, R. C., and Johnson, N. L. (1980).Survival Models and Data Analysis, Wiley, New York.

    Google Scholar 

  15. Farrington, D. P. (1985). Predicting self reported and official delinquency. In Farrington, D. P. and Tarling R. (eds.),Prediction in Criminology, State University of New York Press, Albany.

    Google Scholar 

  16. Harris, C. M., and Moitra, S. (1978). Improved statistical techniques for the measurement of recidivism.J. Res. Crime Delinq. 15: 194–213.

    Google Scholar 

  17. Harris, C. M., Kaylan, A. R., and Maltz, M. D. (1981). Refinements in the statistics of recidivism measurement. In Fox, J. A. (ed.),Models in Quantitative Criminology, Academic Press, New York.

    Google Scholar 

  18. Heckman, J. J., and Singer, B. (1982). Population heterogeneity in demographic models. In Land, K., and Rogers, A. (eds.),Multidimensional Mathematical Demography, Academic Press, New York.

    Google Scholar 

  19. Heckman, J. J., and Singer, B. S. (1984). A method for minimizing the impact of distributional assumptions in econometric models for duration data.Econometrica 52: 271–320.

    Google Scholar 

  20. Heckman, J. J., and Singer, B. S. (1985). Social science duration analysis. In Heckman, J. J., and Singer, B. S. (eds.),Longitudinal Analysis of Labor Market Data, Cambridge University Press, Cambridge, Chap. 2.

    Google Scholar 

  21. Hoffman, P. B., and Stone-Meierhoefer, B. (1979). Post release arrest experiences of federal prisoners: A six-year follow-up.J. Crim. Just. 7: 193–216.

    Google Scholar 

  22. Hsiao, C. (1986).Analysis of Panel Data, Cambridge University Press, Cambridge.

    Google Scholar 

  23. Kalbfleisch, J. D., and Prentice, R. L. (1980).The Statistical Analysis of Failure Time Data, Wiley, New York.

    Google Scholar 

  24. Kendall, M. G., and Stuart, A. (1973).The Advanced Theory of Statistics, Vol. 2, 3rd ed., Hafner, New York.

    Google Scholar 

  25. Kiefer, N. M. (1988). Economic duration data and hazard functions,J. Econ. Lit. 26: 646–679.

    Google Scholar 

  26. Kitchener, H., Schmidt, A. K., and Glaser, D. (1977). How persistent is post-prison success?Fed. Protect. 41: 9–15.

    Google Scholar 

  27. Lattimore, P. K., Witte, A. D., and Baker, J. R. (1990). Experimental assessment of the effect of vocational training on youthful property offenders.Eval. Rev. 14: 115–143.

    Google Scholar 

  28. Lawless, J. F. (1982).Statistical Models and Methods for Lifetime Data, Wiley, New York.

    Google Scholar 

  29. Linster, R. L., and Patterson, E. B. (1987). Probability models of recidivism: An exploration. Discussion Paper 3-87, National Institute of Justice, Washington, D.C.

    Google Scholar 

  30. Lloyd, M. R., and Joe, G. W. (1989). Recidivism comparison across groups: Methods of estimation and tests of significance for recidivism rates and asymptotes.Eval. Q. 3:105–111.

    Google Scholar 

  31. Magidson, J. (1987). Analytic techniques useful in the evaluation of preventive interventions. InPreventing Mental Disorders: A Research Perspective, ADAMHA Monograph.

  32. Maltz, M. D. (1984).Recidivism, Academic Press, Orlando, Fla.

    Google Scholar 

  33. Maltz, M. D., and McCleary, R. (1977). The mathematics of behavioral change: Recidivism and construct validity.Eval. Q. 1: 421–438.

    Google Scholar 

  34. Maltz, M. D., and McCleary, R. (1978). Comments on “Stability of Parameter Estimates in the Split Population Exponential Distribution”.Eval. Q. 2: 650–654.

    Google Scholar 

  35. Maltz, M. D., McCleary, R., and Pollock, S. M. (1979). Recidivism and likelihood functions: A reply to Stollmack.Eval. Q. 3: 124–131.

    Google Scholar 

  36. Mendenhall, W., and Hader, R. J. (1958). Estimation of parameters of mixed exponentially distributed failure time distributions from censored life data.Biometrika 45: 504–520.

    Google Scholar 

  37. Miley, A. D. (1978). Stability of parameter estimates in the split population exponential distribution.Eval. Q. 2: 646–649.

    Google Scholar 

  38. Partanen, J. (1969). On waiting time distributions.Acta Sociol. 12: 132–143.

    Google Scholar 

  39. Peto, R. (1972). Contribution to the discussion of paper by D. R. Cox.J. Roy. Stat. Soc. Ser. B 34: 472–475.

    Google Scholar 

  40. Proschan, F. (1963). Theoretical explanation of observed decreasing failure rate.Technometrics 5: 375–383.

    Google Scholar 

  41. Rhodes, W. (1986). A survival model with dependent competing events and right-hand censoring: Probation and parole as an illustration.J. Quant. Criminol. 2: 113–137.

    Google Scholar 

  42. Rhodes, W. (1989). The criminal career: Estimates of the duration and frequency of crime commission.J. Quant. Criminol. 5: 3–32.

    Google Scholar 

  43. Schmidt, P., and Witte, A. D. (1979). An analysis of the type of criminal activity using the Logit model.J. Res. Crime Delinq. 16: 164–179.

    Google Scholar 

  44. Schmidt, P., and Witte, A. D. (1984).An Economic Analysis of Crime and Justice: Theory, Methods, and Applications, Academic Press, Orlando, Fla.

    Google Scholar 

  45. Schmidt, P., and Witte, A. D. (1988).Predicting Recidivism Using Survival Models, Springer-Verlag, New York.

    Google Scholar 

  46. Schmidt, P., and Witte, A. D. (1989). Predicting criminal recidivism using “split population” survival time models.J. Economet. 40: 141–160.

    Google Scholar 

  47. Sherman, L. W., and Berk, R. A. (1984). The specific deterrent effects of arrest for domestic assault.Am. Sociol. Rev. 49: 261–271.

    Google Scholar 

  48. Smith, D. A., Visher, C. A., and Jarjoura, G. R. (1989). Dimensions of delinquency: Estimating the correlates of participation, frequency and persistence of delinquent behavior. Working paper, Institute of Criminal Justice and Criminology, University of Maryland, College Park.

    Google Scholar 

  49. Stein, W. E., and Lloyd, M. R. (1981). The Maltz-McCleary model of recidivism: A reexamination.Eval. Rev. 5: 132–144.

    Google Scholar 

  50. Stollmack, S. (1978). Comments on “The Mathematics of Behavioral Change”.Eval. Q. 3: 118–123.

    Google Scholar 

  51. Stollmack, S., and Harris, C. M. (1974). Failure rate analysis applied to recidivism data.Oper. Res. 23: 1192–1205.

    Google Scholar 

  52. Tauchen, H., Witte, A. D., and Griesinger, H. (1988). Deterrence, work and crime: Revisiting the issues with birth cohort data. NBER working paper no. 2508, Cambridge, Mass.

  53. Trussell, J., and Richards, T. (1985). Correcting for unmeasured heterogeneity in hazard models using the Heckman-Singer procedure. In Tuma, N. (ed.),Sociological Methodology 1985, Jossey-Bass, San Francisco.

    Google Scholar 

  54. Tuma, N. B., Hannan, M. T., and Groeneveld, L. P. (1979). Dynamic analysis of event histories.Am. J. Sociol. 84: 820–854.

    Google Scholar 

  55. Visher, C. A., and Linster, R. L. (1990). A survival model of pretrial failure.J. Quant. Criminol. 6: 153–184.

    Google Scholar 

  56. Waldo, G. and Griswold, D. (1979). Issues in the measurement of recidivism. In Seechrest, L., White, S., and Brown, E. (eds.),The Rehabilitation of Criminal Offenders: Problems and Prospects, National Academy of Sciences, Washington, D.C.

    Google Scholar 

  57. Wilkins, L. (1970). The Borstal Prediction Study. In Johnson, N., Savitz, L., and Wolfgang, M. (eds.),The Sociology of Punishment and Correction, 2nd ed. Wiley, New York.

    Google Scholar 

  58. Witte, A. D., and Schmidt, P. (1977). An analysis of recidivism, using the truncated lognormal distribution.Appl. Stat. 26: 302–311.

    Google Scholar 

  59. Witte, A. D.,et al. (1982). The effect of a less coercive internal prison environment and gradual reintegration on post-release prison performance: An evaluation of Morris' model of imprisonment as implemented at the Federal Correctional Institution at Butner, N.C., Report to the Federal Bureau of Prisons, Contract J100c-047.

  60. Yamaguchi, K. (1986). Alternative approaches to unobserved heterogeneity in the analysis of repeated events. In Tuma, N. (ed.),Sociological Methodology 1986, Jossey-Bass, San Francisco.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chung, C., Schmidt, P. & Witte, A.D. Survival analysis: A survey. J Quant Criminol 7, 59–98 (1991). https://doi.org/10.1007/BF01083132

Download citation

Key words

  • survival time
  • survival analysis
  • failure time
  • proportional hazards model
  • split population model
  • recidivism